

The ALAN Adventure Language

Reference Manual
Version 3.0beta4

Alan Adventure System - Reference Manual

This version of the manual was printed on March 05, 2014

- ii -

Alan Adventure System - Reference Manual

Table of Contents

1 INTRODUCTION...11
1.1 Programmer’s Pitch..12
1.2 To the Reader...12

2 CONCEPTS.. 13
2.1 What Is An Adventure?..13
2.2 Elements Of Adventures...15
2.3 Alan Fundamentals...16

 What Is A Language?.. 16
 The Alan Idea... 18
 What’s Happening?.. 18
 The Map... 19
 The Things... 19
 Other People and Monsters... 20
 Acting... 20
 The Input.. 20

2.4 Introduction to the Language...21
 Notation... 21
 The Locations.. 22
 The Objects.. 24
 The Actors... 27
 Inheritance and Object Orientation.. 27

 Inheritance and Instances...27
 Polymorphism..28
 Every and The..28
 The Pre-defined Classes..29
 Creating Classes and Instances..29
 Specialising and Overriding..30

 The Verb Construct.. 31

- iii -

Alan Adventure System - Reference Manual

 Checking Things..32
 The Syntax.. 33
 Text Output Formatting.. 35

3 LANGUAGE REFERENCE...37
 General Rules..37

3.1 An Adventure...38
3.2 Options..39
3.3 Types...40

 Basic, Simple and Compound Types.. 41
 Instance Type.. 41
 Event Type... 42
 Set Type... 42
 Type Compatibility.. 43
 Type Requirements... 43

3.4 Import..44
3.5 Classes..45

 Inheritance.. 45

3.6 Instances...46
 Entities.. 47
 Things... 48
 Objects.. 48
 Actors... 48

 The Hero..49
 Locations... 50
 Literals... 51

3.7 Properties..51
 Inheriting Properties... 52
 Initial Location... 54
 Names... 54

 Inheriting Names...56

- iv -

Alan Adventure System - Reference Manual

 Displaying Instances...56
 Pronouns... 57
 Attributes.. 58

 Boolean Attributes..59
 Numeric and String Attributes..59
 Event Attributes...60
 Reference Attributes...60
 Set Type Attributes...61
 Inheriting Attributes..62

 Initialize.. 63
 Description.. 64
 Articles and Forms.. 66

 Articles ...67
 Form..68
 Printing..69

 Mentioned.. 69
 Container Properties.. 70

 Limits...71
 Header and Else..72
 Extract..73

 Verbs.. 74
 Entered... 74
 Exits.. 75
 Scripts... 76

 Steps..77

3.8 Additions...78
3.9 Syntax Definitions...78

 Indicators.. 80
 Parameter Restrictions.. 82
 Syntax Synonyms... 83
 Default Syntax... 84
 Scope.. 85

- v -

Alan Adventure System - Reference Manual

3.10 Verbs..85
 Verbs in Locations... 87
 Verb Checks.. 87
 Does-clause... 88
 Verb Alternatives.. 89
 Verb Qualification... 90
 Verb Execution.. 91

 Controlling Execution with Qualifiers...92

3.11 Events...94
3.12 Rules..94
3.13 Synonyms..96
3.14 Messages..97

 Message parameters...98

3.15 Prompt Section..99
3.16 Start Section...100
3.17 Statements...100

 Output Statements... 100
 String Statement..101
 Style Statement...103
 Describe Statement..103
 Say Statement...104
 List Statement..105

 Multi-media Statements.. 105
 Show Statement..106
 Play Statement..106

 Special Statements... 106
 Quit Statement..106
 Look Statement..107
 Save and Restore Statements..107
 Score Statement...107

- vi -

Alan Adventure System - Reference Manual

 Visits Statement...108
 Transcript Statement..108

 Manipulation Statements.. 109
 Locate Statement...109
 Empty Statement...110
 Strip Statement...111

 Event Statements... 111
 Schedule Statement...111
 Cancel Statement..112

 Assignment Statements... 113
 Make Statement...113
 Increase and Decrease Statements..113
 Set Statement...114
 Include Statement..115
 Exclude Statement..115

 Conditional Statements... 115
 If Statement...116
 Depending On Statement...116

 Actor Statements.. 118
 Use Statement..118
 Stop Statement...118

 Repetition Statements... 118

3.18 WHERE Specifications..119
3.19 WHAT Specifications..121
3.20 Expressions...122

 Types of Expressions... 122
 Literal Values... 123
 Attribute References... 123

 Location Of..124
 Random Values... 124
 Logical Expressions.. 125
 Class Expressions.. 126

- vii -

Alan Adventure System - Reference Manual

 Binary Operators... 126
 Relational and Equality Operators... 126
 String Containment... 127
 Current Entities... 128
 This Instance... 128
 The Whereabouts of an Entity.. 129
 Aggregates... 129

3.21 Filters...131

4 LEXICAL DEFINITIONS..133
4.1 Comments..133
4.2 Words, Identifiers and Names...133
4.3 Numbers..135
4.4 Strings...136
4.5 Filenames...137

5 RUNNING AN ADVENTURE...139
5.1 A Turn of Events..139
5.2 Player Input..140
5.3 Run-time Contexts...142
5.4 Moving Actors...143
5.5 Undoing..144
5.6 Scripting and Commenting...144

6 HINTS AND TIPS...147
6.1 Use of Attributes...147
6.2 Descriptions..150
6.3 Common Verbs..150

- viii -

Alan Adventure System - Reference Manual

6.4 Distant Events..151
6.5 Doors...152
6.6 Questions and Answers..152
6.7 Actors...153
6.8 Vehicles..155
6.9 Floating Objects...157

 Body Parts..158
 Outdoors and Indoors..159
 Nested Locations as a Solution...160

6.10 Darkness and Light Sources...160
6.11 Distant & Imaginary Objects...162

 A Mountain..162
 The Melody...163

6.12 Using Events as Functions...164
6.13 Structure...164
6.14 Debugging..165

 Command Logs and Game Transcripts...165
 Interpreter and Instruction Trace...166
 Debug mode...166
 Using the Debugger..166

7 ADVENTURE CONSTRUCTION..175
7.1 Getting an Idea...175
7.2 Elaborating the Story..176
7.3 Implementing it..176
7.4 Polishing the Adventure...177
7.5 Beta Testing...178

- ix -

Alan Adventure System - Reference Manual

Appendix A: How To Use The System..179

Appendix B: A Sample Interaction... 183

Appendix C: Run-time Messages.. 186
 Author Errors...193
 Player Errors..194
 Implementor Errors..194

Appendix D: Language Grammar.. 196

Appendix E: Predefined player words.. 199
 English..199
 Swedish..199
 German...199

Appendix F: Compiler Messages...200

Appendix G: Localization..212

Appendix H: Portability of Games...214

Appendix I: Copying Conditions..215
 Preamble...216
 Definitions..216
 Permission for Use and Modification Without Distribution..217
 Permissions for Redistribution of the Standard Version...217
 Distribution of Modified Versions of the Package as Source...218
 Distribution of Compiled Forms of the Standard Version or Modified Versions without the
Source...218
 Aggregating or Linking the Package..219
 Items That are Not Considered Part of a Modified Version..219
 General Provisions...219

- x -

Alan Adventure System - Reference Manual

1 INTRODUCTION

Text adventures or, using a more appropriate term, interactive fiction, is a
form of computer game which has many things in common with fiction in
book form, role-playing games and puzzle-solving. To create a high quality
interactive fiction game, you need to be more of an author than a
programmer.

Alan is a special purpose computer language specifically designed to make
it very easy to create such adventure games requiring only limited
programming skills.

The main principle of the design of the language is simplicity. That is, it
should be very easy to do common things, but it should also be possible to
do more complicated things by constructs that are more complex. This
means that wherever a construct is optional, the system supplies some
sensible default.

The author and a very good friend designed the first crude version of the
Alan language in 1985. During many years of incremental improvement
and use, it has now reached its third major version. This means that the
language has a sound foundation, based on practical use. Therefore,
features have been added as experience have grown, from actual use and
understanding of the most prioritised needs.

In this version modern and novel object orientation features has been
incorporated into the language that allows definition of classes,
instantiation and inheritance of attributes and other features. Do not worry
if you find these terms incomprehensible at this point, Alan is still an easy

- 11

Alan Adventure System - Reference Manual

language to use and by reading this manual, you will understand how these
new features may aid you in your quest for adventures.

1.1 Programmer’s Pitch

Alan is an application-oriented language. It features constructs that are
natural to an author of Interactive Fiction. Alan is a strictly typed,
compiled, object-oriented language with single inheritance. Classes inherit
properties from their super-classes. The class system allows polymorphism
so that instances of subclasses are valid wherever a super-class is specified.
There are no explicit type declarations, except for instances of classes;
instead, types are automatically inferred from expressions such as integers,
strings or instances of a particular class.

1.2 To the Reader

There are probably four major types of readers of this document:

1. Readers completely new to interactive fiction – read the whole
document from the beginning.

2. Readers familiar with writing Interactive Fiction but new to Alan –
read from section 2.4 onwards.

3. Alan v2 users wanting to upgrade – you should read the separate
document on conversion, then section 2.4 and onwards, with
frequent use of chapter 3 as a reference while doing your
conversion.

4. Alan v3 users looking for detailed answers – use the index, look up
the relevant sections in chapter 3 but also glance through chapter 2
from section 2.4. Visit http://www.alanif.se for a collection of
examples.

12 -

http://www.alanif.se/

Alan Adventure System - Reference Manual

All readers are encouraged to give feedback on the documentation,
particularly if you could not find the answer to what you were looking for
by using the index, the table of content or skimming through what you
thought might be relevant parts of the documentation. You can find the
authors through the web page http://www.alanif.se, where you also can
enrol in the Alan mailing list, a place for new and seasoned Alan users
alike!

- 13

http://www.alanif.se/

Alan Adventure System - Reference Manual

2 CONCEPTS

2.1 What Is An Adventure?

As long as man has been around there have been stories, fairy tales and
fantasies. In the early days, storytellers told their stories to silent and
astonished audiences. After Gutenberg, the stories were printed and the
readers partook in the fantasies of the author. In our days, passive viewers
are fed from the silver screen or through the tube.

In our century, at last, there has evolved a way for the “audience” to take
part in the story themselves. It started in the forties and fifties and
continued to develop into the games today known as Dungeon and
Dragons, Tunnels and Trolls, etc. Games where a game leader designs the
story, but the players decide (and perform) the actions of the characters in
the story.

These games, of course, have a computerized counterpart.

These games are played interacting with the computer. The program
describes a scene or situation (usually in text, but pictures may also be
used), the player decides on some action and gives orders to the computer
to carry out his wishes. Usually there are objects to manipulate, traps to
negotiate and puzzles to solve, the object being to find the hidden
treasures or save the world.

Crowther & Woods started this form of games in the late sixties when they
designed the famous Colossal Cave Adventure, which became available on

- 15

Alan Adventure System - Reference Manual

many mainframe computer systems. Inspired by this, Lebling et.al (then at
MIT) took a giant step forward in adventuring by creating the Great
Underground Empire and making it available for venturing Adventurers in
the game Dungeon. This game contained a much more developed story
and could handle much more complex commands.

Later, Dave Lebling & Co started Infocom, a company where they
continued to develop their technique, first with Zork I, II and III (the first a
re-implementation of Dungeon, the others equally successful sequels).
Since then, a host of games has been released (Starcross, Witness, Enchanter
are some of the names that come to mind). Although the original authors
are long scattered, the Infocom games are still highly appreciated even
today.

Other companies have followed Infocom’s example and a handful of them
seem to make a living out of creating adventure games. However, today
most of the works are created by devoted people that do it for the fun of
it, releasing their games as shareware or completely free.

There have been many attempts to use computer graphics to display the
surroundings and objects in adventure games. Some of the more
successful early examples are the Sierra games (notably the Leisure Suit
Larry and the Kings Quest series) which had mouse oriented moves but also
allowed single line text commands, games from ICOM Simulations
(DejaVu and The Uninvited) which were purely graphics games with mouse
and icon interfaces. Other manufacturers have tried to use (sometimes
optional) pictures to accompany the text, for example Magnetic Scrolls
games (e.g. the Pawn), which shift the picture automatically as you move
around using the normal directional commands.

Currently, a community of addicted authors and players of text-based
adventure games are still out there. Visit the vaults of interactive fiction on
the Internet, and you will be surprised by the abundance of modern, high
quality interactive fiction available.

The Alan Adventure Language has been designed to aid construction
primarily of pure text adventures or, in the words of Infocom, interactive

16 -

Alan Adventure System - Reference Manual

fiction. Some sound and graphics functions are also available to spice up
your game if you so desire.

The main feature of adventures is the interaction between the player and
the game through commands input through the keyboard and descriptions
printed on the screen. In Appendix B you can find such a sample
interaction.

2.2 Elements Of Adventures

The success of all Infocom games can probably be attributed to three
distinctive features. First, they all have a ‘believable’ and consistent plot,
which is flavoured with humour and wittiness. Second, the descriptions are
extensive and give a lot of atmosphere to the game. Third, the command
handler recognizes and understands a large vocabulary and complex input.
Add to this the worlds best graphics device (the human brain) and you are
unbeatable!

Looking at adventures in more detail, we can see some common features.
There is always the world or universe (called the map) where the adventure
is taking place. Although you can move around quite freely there are
usually some problems getting into certain parts of the world (e.g. locked
doors, no air to breathe or even finding the entrance). The size of the map
ranges from hundreds of locations to just two or three, or even a single
location.

Then, there are the objects in the game. These range from your tools, like
lamps and shovels, to immaterial things like a hole in the ground, in short,
anything you can manipulate. Ideally, everything that is mentioned in a
description should be an object, but this is normally impossible because of
storage limits (and perhaps the stamina of the games designer!).

Most objects have uses. You can easily guess how to use a key, but what
about the velvet pillow? Red herring objects are also common in
adventuring.

- 17

Alan Adventure System - Reference Manual

The player must be able to express his wishes. Complete understanding of
natural language commands from the player is probably overkill, but single
verb-object input is not sufficient for a good game either. The player must
be able to say things like

> take all except the blue vase

or

> put the ring and the bag in the box

2.3 Alan Fundamentals

Alan is all about adventure games, or interactive fiction. In this manual, we
will use both terms interchangeably since they convey two slightly different
views on the purpose. But the technical platform, the Alan language and
its support system, is the same, works the same and looks the same,
regardless if you are designing a treasure hunt featuring an elaborate
combat and hit point system or if you are competing with Sir William
Shakespeare himself.

What Is A Language?

A computer language is usually described as a set of rules for textual
instructions for a computer. The idea is that a computer can follow those
rules and perform the necessary and/or intended actions.

18 -

Alan Adventure System - Reference Manual

The Alan Adventure Language is a high-level computer language designed
to make it easy to create text adventures. This means that the language
have been designed so that the textual instructions are relatively easy to
read and write if you understand the mechanisms that adventures are made
from. In addition, it requires only for minimal additional instructions to
make those mechanisms work.

Compared to programming in a typical programming language, the Alan
system handles most of the tiresome tasks and supplies reasonable defaults
so that you can concentrate on the plot, the puzzles, the objects and the
map. This makes Alan a true high-level computer language.

The Alan system consists of two computer programs, one of which analyses
an input following (or at least intended to follow) the Alan language. This
program is called the compiler and the analysis ensures that the input (the
game description, in fact) makes sense. The compiler also, at the same
time, converts the input into something more compact, the game file. This
game file can be transferred and used without the compiler. Instead, to run
an adventure the interpreter is needed. The interpreter is another program
that reads the information in the game file, communicates with the player
of the game (or reader of the work, if you like) and interprets all the
complex mechanisms in your game logic so that it gives the player the
illusion of the activities and events that you have designed.

- 19

Alan Adventure System - Reference Manual

To create works of interactive fiction using Alan, you also need a program
with which to construct your Alan source code, a standard text editor, like
Notepad or similar programs. However, you cannot use a word processor,
like Microsoft Word, since the files created with those usually contains
formatting information that the Alan compiler don’t understand.

There are also special editors, or additions to standard editors, available,
which supports Alan coding and helps with formatting and even compiling
and running your game.

You might wonder why the game is not a single executable program. The
answer is simple, compare the game with a Word-document. In order for
the document to be visible, you need the Word-program that reads the
Word-file and displays the content on the screen. As you probably know,
the same program does not run on all computers. For example, you cannot
install Word for Windows on a Macintosh.

In view of this, it might be considered a nice thing that there are programs
for Macintosh that read, display and print Word-documents. This makes
the document files portable. Once you have a reading program on your

20 -

Figure 1: The principles for and relations between a game description, a
compiler, a game file and the interpreter, or, in other words, authoring and

playing.

Alan game
description

What do
you want to
do next?

compiler interpreter

distribution Portable
game file

Alan Adventure System - Reference Manual

computer, you can use all similar files on it. This is also one reason behind
the compiler-interpreter design of Alan.

The Alan Idea

The Alan language does not focus on variables, subroutines or other
traditional programming constructs, because Alan is not primarily a
programming language. Instead, Alan takes a descriptive view of the
concepts of adventure authoring. The Alan language contains constructs
that make it possible for you, the author, to describe the various features
of these concepts. By describing for example, how the locations in the
adventure are connected you have described the geography in which the
story will take place. Much of what should be described is in terms of
ordinary text shown to make the player experience the story that you have
designed by reading them.

You will still need to understand how to vary your output depending on
various conditions or information, how the player input controls which
events will happen, how to connect one location to another and how to
store information for later use. In a way this is programming, but in an
unusual sense.

In order to understand the rules of the Alan language, which this manual is
all about, it is necessary to first establish some common ground. As an
author you will have to have the same view as the Alan language has on
some fundamentals of what a work of interactive fiction is all about.

What’s Happening?

The execution of an adventure is primarily driven by the input of player
commands. A command is analysed by the interpreter program according
to the player command syntax allowed by the author and, if understood,
transformed into execution of verbs or movements, which in turn may
trigger other parts in the game as described in the Alan source. After a
player turn, other, scripted non-player characters or actors, can move,

- 21

Alan Adventure System - Reference Manual

controlled by the computer, again according to the definitions in the
source. Scheduled events are then run, and then the player takes another
turn. This is described in more detailed in section 5.1, A Turn of Events
on page 149.

The following sections describe a number of the fundamental concepts
that are present in an adventure game and what the Alan view of them is.

The Map

The scene for the game is a map of a number of connected locations. A
location has a description that is presented to the player when that location
is entered. A location may also have a number of exits stating in which
direction there are exits and to which locations they lead. Alan places no
restrictions on the layout of the map, any topology is allowed.

Note: In Alan, exits are always one-way, and an explicit declaration
of a backward path (if such is desired) must be made.
Although, normally you would probably want them to be two-
way, if they where automatically two-way, it would be very
hard to handle the rare, but important, cases when you want
them to not be.

The Things

Most objects in an adventure are things that in real life would be objects
too, like a knife or a key. In addition, other things that should be possible
to manipulate by the player, e.g. parts of the scenery, must be declared as
an object. For example if you require the player to ‘whistle the melody’,
then the melody must be an Alan object.

Objects, like locations, have a description that is presented when they are
encountered during the game.

22 -

Alan Adventure System - Reference Manual

Every object may also have a set of properties, like edible and movable,
which may be changed during the execution of an Alan program. Most
objects would e.g. probably not be edible so there is also a mechanism for
declaring how these properties should be set by default, as well as
mechanisms to override them, both for a particular object and for groups
of objects.

Some player actions (verbs) have special meaning or effects when applied
to a certain object. These verbs and their special effects are also declared
within the object declaration.

Other People and Monsters

An extra thrill and dimension are additional characters in the game. In
Alan, these are called actors and may have a life of their own. For each
move the player makes, these programmed characters also get a turn to do
their thing. An actor may be a thief running around and stealing your
collected treasures or a dragon guarding the entrance to its lair.

Actors get their behaviour from scripts that step, by step, describes what is
going to happen for each player interaction.

One of the interesting things about playing adventure games with actors is
to figure out how to interact with and influence the other characters.

- 23

Alan Adventure System - Reference Manual

Acting

The player commands action by typing imperative statements. These
statements are analysed and results in execution (“calls”) to verbs. The
effects of these commands must be declared in verbs by the game author,
either in an object (describing the effects of the verb when applied to an
object) or as a general (global) verb that only applies without object.

The Input

To make it possible for the player to input more complex commands a
means to specify the syntax for a verb is also available. A particular syntax
is connected to a verb and describes how the player must phrase his input
in order to command the triggering of a particular verb. Using this
mechanism, verbs can also be made to operate on literals (strings and
integers) giving the player the possibility to input things like

> write "Merry Christmas, Mr. Lawrence" on the xmas card

2.4 Introduction to the Language

Alan is an adventure language, i.e. a language designed to make it easy to
write adventures. This means that constructs in the Alan language reflects
the various concepts encountered when creating an adventure plot.

A common step after having come up with a plot for your adventure is to
draw a map of the world where the adventure is taking place. For this
purpose, we use Locations.

The next step is to introduce tools, weapons and other objects possible to
manipulate. These are the Objects.

Then the player will need words to command action. The Alan language
construct to supply these with is the Verb. Using the Syntax construct,
you can also define more complex player input.

24 -

Alan Adventure System - Reference Manual

Additionally, you may also want other characters and creatures in your
adventure. For this the Actor class is provided.

Notation

In this document, there are some typographical clues. Example Alan
source code is typeset in separate sections with a mono-spaced font:

This is an example of some source code.

You will also encounter sample game-play which will be formatted using a
surrounding border (like paper...) thus:

Grandma's House
You are outside your grandma's house.

Later in the manual, you will find semi-formal definitions, grammar rules,
for how various constructs may be constructed. These sections are typeset
against a coloured background:

The rules for the rules are available in Appendix L on page
211.

In running text, words that are keywords or signify an Alan construct is
written in a mono-spaced, bold, font. This helps distinguish the English
word ‘the’ from the Alan keyword ‘The’.

As shown in the last example, Alan keywords are written with the first
letter capitalized. This is simply a convention and has no effect other than
the visual. A keyword can be written Keyword, KEYWORD, keyword, or
even KeYwOrD (if you are keen to show how good you are with a
keyboard…). This manual tries to be consistent with using the first version
(except in grammar rules).

- 25

Alan Adventure System - Reference Manual

The Locations

The scene for your adventure is a series of “rooms” or, rather, locations.
Locations are connected by exits, leading out of one location into another.
This makes it possible for the hero to travel through the world of your
design, exploring it and solving the puzzles.

What is required if we want to describe a location? Every location must
have an identifier. This is so that you, the designer, may refer to that
location easily, instead of having to remember a magic number for it.

Unless you plan to provide other means for transportation from a location,
you should also describe in which directions there are Exits and to which
locations they lead.

In fact, this is all that is necessary in a location, so lets look at an example
(you would probably like to try this out, referring to Appendix H, o, on
page 229 for instructions for your particular system).

The kitchen Isa location
Exit east To hallway.

End The Kitchen.

The hallway Isa location
Exit west To kitchen.

End The hallway.

Start At kitchen.

This is a complete Alan adventure (although very primitive). As you see,
every Alan construct ends with a period (‘.’) and there is a “Start At”
sentence at the end, indicating in which location to put the hero when the
game starts.

Type the above text into a text file, e.g. using a notepad program. Run this
little Alan source through the Alan compiler and try the adventure (see
Appendix A, How To Use The System, on page 192 on how to do this).
After starting the adventure, two lines will be shown on your screen. The
first line will contain “Kitchen” and the second a “>”, which is the default
prompt for the player to input a command. Now try typing “east” and

26 -

Alan Adventure System - Reference Manual

press the return/enter key. The word “Hallway” and the prompt will
appear. Typing “west” will take you back to “Kitchen” again. (Use Ctrl-C
to exit the game if you are running it in a console window.)

The identifier for a location is automatically used as a description, a
heading, shown when that room is entered. And the words listed in the
Exit-parts are translated into directional commands the player can use in
his input.

You should remember that exits are strictly one-way. An Exit from one
location to another does not automatically imply the opposite path. Thus,
you must explicitly declare the path back, in the definition of the other
location.

However, just the name of the location is not much of a description. So in
order to provide the “purple prose” descriptions often found in many
adventures there is an optional Description-clause that you can use. Let
us describe the Hallway.

The hallway Isa location
Description

"In front of you is a long hallway. In one end
is the front door, in the other a doorway. From
the smell of things the doorway leads to the
Kitchen."

Exit west To kitchen.
End The hallway.

We introduce another feature in this example, namely the text enclosed in
double quotation marks (") which is called a String or, when used on its
own like this, an output statement. When executed this string will be
presented to the player and formatted to suit the format of his screen.

Invent a description for the Kitchen, enter it in the Alan source and run
the changed adventure. You notice, of course, that the text in the output
statements is reformatted during output to suit your screen, in order to
make room for as much text as possible. Note also that you do not have to
worry about this at all - in your source file, you may format the text any
way you like, even spanning multiple lines with extra white-space included.

- 27

Alan Adventure System - Reference Manual

This type of output statement is just one of the statements in the Alan
Language, and we will see more of them later.

It is also possible to have conditions and statements in the Exit-clauses of
a Location to restrict the access to the next location or to describe what
happens during this movement.

Exit west To kitchen
Check kitchen_door Is open

Else "The door is closed."
Does

"As you enter the kitchen the smell of
something burning is getting stronger."

End Exit west.

The Objects

Another essential feature in Alan are the objects. Like the location, the
object is a means to describe the “physical” world where your adventure is
taking place. Many objects are probably used to provide puzzles, such as
closed doors, keys and so on, but other objects should be promoted to
objects too. A large number of objects that can be examined and
manipulated make a game so much more enjoyable.

Objects, like locations, have identifiers and descriptions, so you might
guess the general structure of an object:

The door Isa object At hallway
Is closed.
Description

"The door to the kitchen is a sliding door."
If door Is closed Then

"It is closed."
Else

"It is open."
End If.

End The door.

An object may initially be located at a particular location. This is indicated
by the At-clause, in this case telling us that the door is initially located in
the Hallway. Objects do not have to start at a particular place in which
case they are not present in the game until located, by executing some
code, at some place where the player may lay his hands on them.

28 -

Alan Adventure System - Reference Manual

In addition, objects may have attributes indicating the state of certain
properties of the object. In this example with a door, the Is closed part
indicates that the door should have the attribute closed, which initially is
set to TRUE (implying that the door is initially closed). The opposite would
be indicated with a Not, (i.e. Is Not closed).

Alternatively, attributes may be numeric (e.g. Has weight 5) or be of
string type (e.g. Has inscription "Kilroy was here").

We also introduce another Alan statement, the If-statement. The If-state
ment allows you to select which statements to execute according to some
condition. In the example, the closed attribute of the door selects which
description to show. There are further variations of expressions and the
If-statement, but we will come back to these later (Expressions on page
131 and If on page 121).

Instead, let’s look at some other statements in relation to objects.

It must of course be possible to change the value of attributes of an object.
You can do this using the Make statement or the Set statement. For
example if the door should be opened (the player having said “open
door”, perhaps) this could be performed by stating

Make door Not closed.

To close it (i.e. setting the closed attribute to TRUE again) you write
Make door closed.

The Make statement changes Boolean (or True/False) attributes. The Set
statement changes numeric or string attributes, for example

Set level Of bottle To 4.

Note: These statements only change attributes. The implications of
such a change must be implemented by writing Alan code that
test these attributes and provides differing text output to the
player. This is what gives the player the illusion of a door being
open or closed for example.

- 29

Alan Adventure System - Reference Manual

Note: Alan does not understand, or enforce, any semantic in the
identifiers for attributes, they are only identifiers. The illusion of
the effects of differences in the value must be implemented by
varying the output. In addition, Alan does not understand that
an attribute ‘closed’, for a human would be the opposite of an
attribute ‘open’. You should choose one and stick to it.

Of course, attributes are not only available on objects, but on locations
and other types of entities also.

Another manipulation statement is the Locate statement. This is the
statement to use when moving objects from one location to another.
Opening a lid might cause a previously hidden object to fall to the floor,
something that could be performed by moving the object from limbo to
the current location with:

Locate treasure Here.

You could also relocate it to a particular place using the statement:
Locate vase At hallway.

The Actors

Actors can be used to populate the adventure with creatures, beings and
other people. They might be pirates or monsters, but the thing they have
in common is that they move around or at least perform various actions
more or less in the same way as the player does.

An actor may have a Description and attributes like objects and
locations. An actor performs his movements by following scripts, each
having a number of steps. Each step corresponds to one player move.

The charlie_chaplin Isa actor Name charlie chaplin
Script going_out

Step
Locate Actor At outside_house.

Step

30 -

Alan Adventure System - Reference Manual

Locate Actor At hallway.
Use Script going_out.

End The charlie_chaplin.

Inheritance and Object Orientation

Object orientation is a term that is often used when talking about
programming. The concept is modelled after a natural phenomenon first
described by the Swedish botanist Carl Linnaeus (or Carl von Linné). He
devised a naming system for flowers and plants that was based on features
common between various species and families. The idea is that a general
concept such as a mammal is defined by listing some features which all
mammals share. Specialisations such as sub-species in turn have other,
more specialised, features in common.

In nature, we talk about species and individuals. In object oriented
programming we talk about classes and instances, which are similar.
Classes are abstract definitions of what the common features are and
instances are individuals (data objects) having those features.

Inheritance and Instances
Inheritance means that a more general class can be restricted or specialised
into new sub-classes. We say that the specialised class inherits from the
more general. Most object oriented programming languages allows
creating instances from any class, which does not happen in nature, there
are no individuals that are mammals, they are individuals of some specific
species of horse for example.

In programming, we can use this concept to make some things easier for
ourselves. By collecting features that are common to many types of data
objects into classes and sub-classes we can inherit those features. In this
way, we can avoid explicitly, and repeatedly, stating those for every data
object. One small drawback is that we have an implicit declaration of
features, which can make reading a bit more obscure. We need to look up
the parent class (or classes) for complete information about the object.

- 31

Alan Adventure System - Reference Manual

Polymorphism
By using inheritance, we can also guarantee the properties of similar, or
related, instances. If every mammal is a vertebrae, we know that all
properties of vertebrates also applies to mammals. We can use this
knowledge to handle commonalities without knowing anything about the
more specialized kinds, or classes. One example of this might be lockable
things like doors and drawers. If they inherit from a common ancestor
'lockable_things', then we do not need know if it was a door or a drawer, if
we are only interested in the 'locked' property. This flexibility, know as
polymorphism, is possible in programming only through object orientation
and inheritance.

Every and The
The Alan language supports object orientation and inheritance with two
constructs:

Every mammal Isa vertebrate …
The house_pet Isa cat …

The Every-construct defines a class and its properties, including inheriting
from another, even more general class. The The-construct declares an
instance, which in this example inherits from the class ‘cat’. The Isa-
construct defines from which class properties are inherited.

The Pre-defined Classes
To make it easy to get started there are eight classes pre-defined in the
Alan language.

32 -

Alan Adventure System - Reference Manual

They are entity, thing, location, actor, object, literal, string
and integer and have the relationship, inheritance tree, shown in Figure
2 above.

The semantics of these pre-defined classes are in short:

• Only locations (instances inheriting from location) can be visited
by the hero (the players alter ego)

• Only actors may have scripts that they perform

• Only things will be described automatically when encountered

• Literal and its sub-classes cannot be sub-classed. They are used to
handle integers and strings in player input

See the subsections of Instances on page 50 for more detailed descriptions.

Creating Classes and Instances
In the sections above about locations, objects and actors the examples
show how to create an instance of a class. Those examples show how to
do it from the pre-defined classes. However, it is the identical if you have
defined the class yourself. In general the format is

The <instance identifier> Isa <class identifier> …

- 33

Figure 2: Relationships between the pre-defined classes.

thing location

object actor

enti ty

literal

string integer

Alan Adventure System - Reference Manual

To define a class you do much what you would expect:
Every <class identifier> …

After this, declarations of all the properties for that class follow. This
could include inheriting from another class, e.g.

Every door Isa object
End Every.

Every openable_door Isa door
Is open.

End Every.

The kitchen_door Isa openable_door
End The kitchen_door.

In this example, the kitchen_door has the attribute open although it
does not specifically show in the declaration. It is initially set to true as
specified in the declaration of the class openable_door.

Specialising and Overriding
Sub-classing, or specialisation, is usually used to add properties and thus
make the instances of the sub-class more restricted, or specialised. In the
example above, openable_doors are specialisations of doors since they
have an attribute that the more general class does not have.

However, a sub-class can also redefine a feature. In the example above a
class named closed_openable_door could be defined as:

Every closed_openable_door Isa openable_door
Is Not open.

End Every.

This makes all instances of the new class have the same attribute but it is
set to false instead. The important thing is that the feature of having the
attribute is common to all ‘openable_door’s. This is called overriding a
property.

This concludes this short description of object orientation and how the
Alan language supports it. In the following descriptions, you just need to
remember that most features can be inherited along the inheritance tree

34 -

Alan Adventure System - Reference Manual

and be overridden, both during that inheritance and explicitly in the
instance declaration itself.

The Verb Construct

The Verb is the construct that implements the effects of an action
requested by the player. Verbs are associated with a class or an instance.
We will look at the implications of various combinations of these in the
next few sections.

To implement a Verb you need a name for it (which is also the default
word the player should input to request that action). You must also decide
which effects this verb should have under various circumstances.

If we want to implement the Verb open for the door we could use the fol
lowing code

Verb open
Does

Make door open.
End Verb open.

A Verb is either a simple command taking no parameters, like ‘look’, ‘save’
or ‘help’, or it involves one or more parameters that the player can
reference. Simple verbs should be declared at the top level, globally, i.e.
outside of any other declaration. Verbs taking parameters, on the other
hand, must be declared within the class or instance, with which it is
associated. For example, if a verb will handle objects it should be declared
in the object class. The example above should probably best be placed in
the door object itself.

The kitchen_door Isa object
Verb open

Does
Make kitchen_door open.

End Verb open.
End The kitchen_door.

This defines the effects of applying the open verb to that precise door.
The implementation makes direct references to the kitchen_door, so to
make the verb more general it should be possible to apply to all doors.

- 35

Alan Adventure System - Reference Manual

Every door Isa object
Verb open

Does
Make This open.

End Verb open.
End Every door.

With this definition it is possible to apply the verb to all doors. Instead
need to reference the object the player mentioned in his command (see
The Syntax on page 33 for an introduction, and Syntax Definitions on
page 78 for a more thorough discussion). In this case, the attribute closed
must also be available for all objects by ensuring that the attribute exists in
to the class. (See Additions on page 84 on how to add an attribute to a
predefined class such as object).

Of course, there are often also conditions that need to be checked before
we can execute this code (perhaps to see if it was possible to open the
object!). Therefore, Verbs may have Checks, as we will see next.

Checking Things
In order to assert that the correct conditions are fulfilled before the body
of a Verb is actually executed the verb may have an optional Check part.

Verb open
Check o Is openable

Else "You can’t open the $o."
Does

Make o open.
End Verb open.

This is a more realistic definition of the open Verb than the previous one.
It specifies that before the statements after Does are executed, the con
dition after Check must be checked (which, in this case, checks that the
object indicated by the player is really possible to open). If that condition
is TRUE then the requirements are fulfilled and the body of the Verb
(following the Does) can be executed. If this is not the case the Else-part
is executed instead (normally showing some message).

A Check may have multiple conditions as the following code shows:

36 -

Alan Adventure System - Reference Manual

Verb take
Check o takeable

Else "You can’t take that."
And o Not In hero

Else "You already have it."
Does

Locate o In hero.
End Verb take.

Here we also encounter a variation on the Locate statement - the
capability to place an object inside a container (the inventory).

Note: You can never destroy an instance or remove it from the game.
Instead, you can define a limbo location, i.e. a location that is
not accessible to the player and may thus be used as a storage
for “destroyed” objects and other things the player is not
supposed to see.

The Syntax

Normally a verb acts on one object or actor, henceforth called a
parameter, referenced by the player in a command. This means that the
format of player input normally is something like

> take vase

This form, or syntax, is the default form if you don’t specify anything else.
The default syntax might thus be described as

Syntax
? = ? (parameter)

The question marks are place-holders and should be interpreted as the
name of the verb.

In order to allow different and more complex player input the Syntax
construct is supplied.

The Syntax construct is a way to describe the words and parameters the
player may use in order to execute a particular verb (its global and more

- 37

Alan Adventure System - Reference Manual

specialised parts). Below is the syntax for put_in, the verb to put
something inside a container.

Syntax
put_in = ‘put’ (obj) ‘in’ (cont).

This syntax defines the put_in verb to be executed when the player has
input the word ‘put’ followed by a reference to an object or actor (a
parameter named obj), followed by the word in followed by a reference
to a second parameter (the container, referred to as cont), as in

> put the green pearl in the black box

This will bind the parameter obj to the instance that represents the green
pearl and the parameter cont will be bound to the black box.

It is also possible to restrict the types of the parameters:
Syntax

put_in = ‘put’ (obj) ‘in’ (cont)
Where obj Isa object

Else "You can’t put that into anything."
And cont Isa Container

Else "Nothing fits inside that."

This restricts the parameter obj to being an instance inheriting from the
class object (as opposed to an actor for example) and the parameter cont
to a container (an instance with the container property).

The parameters are used as normal identifiers in the Alan source code. The
parameters can only be referenced if they are defined in the current
context, i.e. they can only be used in the various bodies of the verb for
which the syntax applies (see also Run-time Contexts on page 152 for a
detailed discussion).

The Syntax construct allows for more than one parameter, in order to
make it possible to define more complex player commands. Therefore, the
verb execution order described previously from execution of verbs in one
instance must be generalised to verb bodies in all the parameters. In the
example above, verb bodies in the objects or actors referenced as obj and

38 -

Alan Adventure System - Reference Manual

cont (the green pearl and the black box) are executed (if the verb is
present in their definitions).

Text Output Formatting

Text output on the screen is caused by what you have written in the Alan
source code. However, since text is coming from various places it is not
easy or even possible, to anticipate the full context of a particular text.

Therefore, the Alan system takes care of some specific formatting issues.
First, text will always flow neatly inside the window or screen. Lines will be
broken automatically without braking in the middle of words.

Secondly, a few special cases are also handled automatically:

 After a full stop (period, the character ‘.’), an exclamation (‘!’) or a
question mark (‘?’) and in the beginning of paragraphs, including
location headings, the first character will be guaranteed to be upper
case, automatically converted if necessary. This means for example that
you don’t have to consider the case when the name of an object might
be printed as the first thing in a sentence. The name will automatically
be capitalized. For example:

The postmen Isa actor At postoffice …
The postoffice Isa location

Description
Describe postmen.

…

Given the above snippet from a game source, the transcript would
read:

Postoffice
Postmen are working behind the counters.

This would be the case even if the description of the postmen started
with a lower case character.

 Two outputs following each other will automatically be separated by a
space (a blank character). Except for the following case:

- 39

Alan Adventure System - Reference Manual

If an output is immediately followed by another output starting with a
full stop (period, the character ‘.’), an exclamation, a question mark or
a comma, and it is the only character in that output or it is followed by
a space (blank character), no space will be inserted before that output.
This rule will make sure that the full stop in the following source is
automatically adjacent to the previous text, without the need to
suppress spacing.

“You can’t take” Say p. “.”

40 -

Alan Adventure System - Reference Manual

3 LANGUAGE REFERENCE

This chapter describes the Alan language in detail. Within each section,
grammar rules are used to precisely define allowed formats. A description
of how these rules should be interpreted can be found in Appendix L on
page 211.

General Rules
The Alan language is divided into syntactic components of different kinds.
Each component may be composed of text and/or other components. A
component is terminated by a period or full stop (‘.’). This indicates that
that component is complete. Some components start with a keyword or
initial phrase, such as ‘Description’ or ‘Exit east To kitchen’. If it is
to be followed by further components, such as statements or output
strings, that keyword or phrase should normally not be followed by a
period, but by its continuing components. For example:

Exit east to Kitchen.

But
Exit east To Kitchen
 Check kitchenDoor Is open
 …
End Exit.

Note that the first is terminated, but the second example is continued with
a check, and not terminated until the End Exit.

- 41

Alan Adventure System - Reference Manual

3.1 An Adventure

An adventure starts with an (optional) set of options (see Options on page
43) followed by a set of declarations.

adventure = {option} {declaration} start_section

According to the rules it is actually possible to have no declarations at all
(as indicated by the curly braces) but there would be no adventure without
a single location, right? So, in practice you'll need at least one declaration.

The declarations constitute the major part of the adventure. The
declarations can be declared in any order and repeated freely, and are of
many different possible types.

declaration = import
 | class
 | instance
 | addition
 | syntax
 | verb
 | rule
 | synonyms
 | event
 | messages
 | prompt

The adventure source text must end with a start section.

start_section = ‘START’ where ‘.’ statements

It indicates where the hero is when the game starts but can also be used to
set things up, welcome the player and so on. The start section is
mandatory.

Start At bedroom.
Schedule alarm_clock After 2.
"Slowly you come to your senses, your numb limbs
 starting to feel the blood flowing through them..."

42 -

Alan Adventure System - Reference Manual

You can look up the meaning of the rules “where” and “statement”
elsewhere in this chapter.

3.2 Options

Options define things concerning the overall behaviour of the generated
Alan adventure. As is implied they are optional and are only required if
you need to change the value of an option from its default setting. An
option follows the grammar

option = id ‘.’
 | id id ‘.’
 | id integer ‘.’

The example below illustrate how options may be written, following the
above rules.

Debug.
Language Swedish.
No Pack.
Width 128.

The available options are
Option name Possible values Default value

Language English, Swedish,
German1

English

Width 24-255 802

Length 5-255 24

Pack Boolean (on or off) Off (No Pack)

Debug Boolean (on or off) Off (No Debug)

The Language option specifies the language in which the adventure is
assumed played, and selects different default message texts. Alan is

1 Other non-English languages may be supported in the future depending on demand.

2 Width and Length is overridden by the actual terminal or window size, if available.

- 43

Alan Adventure System - Reference Manual

primarily designed for adventures in the English language, but it is also
possible to write adventures in other languages. To make this possible, the
default messages output by the interpreter may be generated in different
languages. It is completely possible to write in other languages, but then
you must customize all the message texts. See page 200, Appendix section
Input Response Messages, for a complete list of such messages.

The Alan compiler and interpreter will always allow multinational 8-bit
characters as input and the default messages is generated for 8-bit
character sets, internally representing national characters according to the
ISO multinational character set (ISO8859-1) requiring 8 bits. On output,
this is converted to the native character set of the machine (whenever
possible). This means that portability between platforms should be good
even for text containing multi-national (non-ASCII) characters.

Width specifies how long the lines the interpreter outputs should be
(formatting is automatic!). The Length option will instruct the interpreter
to how many lines to show on the screen without any player interaction
(<More>). These values are only used if the interpreter itself cannot get the
actual values.

The Pack option will cause the compiler to compress the texts to occupy
less space. As a bonus, this also makes it impossible for the player to cheat
by dumping the adventure code file. As a minor drawback, it does make
the execution of the adventure a bit slower (noticeable only on some very
old, smaller, computers).

In order to allow debugging of the generated adventure (see Debugging on
page 176), the debug option must be turned on. This may also be
performed using the debug compiler switch (see Compiler Switches, on
page 193).

44 -

Alan Adventure System - Reference Manual

3.3 Types

The Alan language handles information in bits, values. Each such bit of
information, or data, is of a specific type. Alan is a strictly typed language,
which means that assignment, comparisons and other statements will
require that rules concerning the compatibility between such values are not
broken.

In the Alan language, you cannot explicitly state the type of a value.
Instead, this is inferred from how values are used, e.g. the initial value of
an attribute or the restrictions put on a syntax parameter.

Basic, Simple and Compound Types

The basic types of values available in the Alan language are:

• Integer – e.g. a simple integer constant, a reference to an integer
typed attribute or a numeric expression using any of the
mathematical operators.

• String – e.g. a string constant or a reference to an attribute typed as a
string.

• Boolean (true or false) – comparisons yield Boolean values, Boolean
attributes.

Two other simple types are available:

• Instance – a reference to an instance or an attribute typed as a
reference attribute that refers to an instance.

• Event – a reference to an event or an attribute typed as a reference
attribute that refers to an event.

There is one compound type in the Alan language:

• Set – an unordered list of values.

- 45

Alan Adventure System - Reference Manual

Instance Type

Every time a reference to an instance is made, it can be considered an
expression of instance type. In these cases, the class of the instance also
often matters. E.g. assigning a reference attribute can only be made if the
new value refers to an instance that belongs to the same class or a subclass
of the initial value of that attribute.

Some types of expressions return a value referring to an a class or instance
in the Alan source. Examples include an identifier bound to a parameter
allowing instances and a reference attribute.

Event Type

Event is a set of statements that can be scheduled to execute with a
specified delay. Each reference to an identifier of an Event is of course of
the Event type. Events can be referenced by attributes and any reference
to such an attribute is of Event type.

Expressions of Event type can be used in Schedule and Cancel
statements.

Set Type

A Set is a collection of values that may be referenced as a single value, but
also investigate, added to and removed from. An example might be a set
of cards in a dealt hand, the set of spells that the hero have learned, or the
set of numbers guessed so far.

The order of elements in the set is not specified. Each member can only
occur once in the same set, but a member can occur in multiple sets. You
could for example include one set of numbers (integers) in one set and
another set of numbers in another set. It is then possible to investigate the
sets and remove all members that are members in both.

46 -

Alan Adventure System - Reference Manual

The Set type is a compound type since it is not complete without a
member type. You can only include members in a set if the type
compatibility rules allow it. A Set may include members that are instances
or integers.

If the Set includes instances, the subclass compatibility rule applies. All
members in the set must inherit from the same class. See the section on
type compatibility below.

Note: The fact that an instance is in a Set does not affect the instance.
In fact, there is no way to find out in which Sets, if any, a
particular instance is included. In particular, it does not affect
the instances location.

Type Compatibility

Assignment and comparisons between values requires the values to be
compatible. The three basic types (integer, string and Boolean) are only
compatible with themselves.

Values of the Instance type can be compared without restriction, except
that there is no notion of lesser or equal, so only equality can be tested.
Assignment can be made if the new value is of the same class, or of a
subclass, as the attribute or variable that receives the value. This class is
normally inferred from the initial value of the declaration.

For example, a reference attribute (an attribute referencing an instance) is
inferred to be restricted to instances of the class of its initial value. Any
subsequent change of the attribute (setting it to refer to another instance)
requires that the new instance be of the same class or a subclass thereof.

These rules ensure that attribute references and other properties are always
retained during the execution of the whole game. Thus, it will never cause
a run-time error on the player.

- 47

Alan Adventure System - Reference Manual

Type Requirements

Some statements require their arguments to be of a specific type. This is
enforced by the compiler. The compatibility rules apply here also, given
that the required type is given by the statement itself.

Examples include the conditional If statement that requires a Boolean
value (or expression) to test and the Use statement, which requires
references to instances that are subclasses of the predefined class ‘actor’.

3.4 Import

The source text for a large adventure might become entangled and
complex. A way to break up a large text is to divide it into separate files.
Each such file can then be imported into the main source using the
import statement.

import = ‘import’ quoted_identifier ‘.’

The quoted identifier is the name of the file to import, see File on page
146. The import may be placed anywhere in a file where a declaration can
occur, and the effect will be the same as if the contents of the named file
had been inserted at that position in the file. Imports may be nested, so an
imported file may in turn import more files, without limits.

An imported file is searched for first in the current directory and then in
any of the directories indicated using the import switch as described in
Compiler Switches on page 193, this search is performed in the same order
as the import switches occurred on the command line.

The import statement is the way to use the standard library (or a library of
your own design). Place the library files in a directory where the compiler
will find them, either in the same directory as your other source files or

48 -

Alan Adventure System - Reference Manual

somewhere else (see Appendix section A.2 Compiler Switches on page 193
on how to make the compiler look in more folders than the one the main
source file is in). In your source you would refer to the main file of such a
library by

import 'library.i'.

Another use is for dividing your own source into multiple files to make
them easier to handle:

import 'harbor.i'.
import 'city.i'.
import 'desert.i'.

import 'actors.i'.

Start At city.

3.5 Classes

class = ‘EVERY’ id
 [inheritance]
 {property}
 ‘END’ ‘EVERY’ [id] [‘.’]

Classes are definitions of templates of instances. That means that a class
declaration only describes instances, and does not add anything to your
game in itself. Instead, you have to create an instance of the class to make
it available in the game (see Instances below).

The id is the identifier used by the author to refer to this class throughout
the source code, e.g. when referring to it in the inheritance clause of other
classes and instances.

The properties are described in Properties on page 56.

- 49

Alan Adventure System - Reference Manual

Inheritance

Every instance must inherit from a class (see Inheritance and Object
Orientation on page 31). Furthermore, user-defined classes must also
inherit from other classes. A class or an instance inheriting from a class
will get all properties of that class. All properties explicitly declared in a
class or instance inheriting from another class will extend, override or
complement those properties as specified in the original, parent, class. This
way, you can easily create new classes by extending existing ones.

You specify which class another class or an instance inherits from using a
clause following the grammar:

inheritance = ‘ISA’ id [‘.’]

For example
The door Isa object …

and
Every coin Isa treasure …

3.6 Instances

The most important part of an Alan game source is probably the
declarations of instances. Instances are the objects, locations, actors and
other things that fill your game universe. The player traverses and interacts
with these in his quest to negotiating your game.

instance = ‘THE’ id
[inheritance]
{property}

 ‘END’ ‘THE’ [id] [‘.’]

50 -

Alan Adventure System - Reference Manual

Every instance must inherit from a class (see Inherit above) keeping all
properties of that class. Each inherited property can be amended or
overridden by specifying it in the declaration of the instance, and new
attributes, exits and scripts can be added in the same way as in class
declaration.

Exactly the same rules for declaring properties apply to instances. The only
difference is that an instance will actually show up in the game when it is
run. Remember also that properties declared in an instance are not
common to any other instances (unless the declaration overrode the value
of a class property).

Instances inheriting, directly or indirectly, from the predefined classes
thing, entity, object, location, actor and literal, are subject to
special semantics and restrictions.

Here are two examples of instance declarations following the rules above:
The red_ball
 Isa object
 At bedroom
 Name red ball
 Is hidden.
 Description
 If This Is Not hidden Then
 "An ordinary ball is laying under the bed."
 End If.
 Verb roll
 Does
 "You roll the ball a bit. Nothing exciting happens."
 End Verb.
End The red_ball.

The mr_brown
 Isa actor
 Name Mr Brown
 Article "".
 Pronoun him.
 Is working.
 Description "Mr. Brown is here, working at his desk."
End The mr_brown.

In these examples the source lines between The and End The all declare
various properties that we will learn more about in section 3.7 Properties

- 51

Alan Adventure System - Reference Manual

on page 56. The rest of the lines are fairly easy to match up to the rules of
the Alan language as described by the earlier box.

All capitalized words in the examples above are keywords in the Alan
language (see Appendix section D.2 Keywords on page 212 for a complete
list), the rest are author defined words or identifiers (with the exception of
the bold words object and actor, which are identifiers predefined to be
special classes).

Entities

The base class entity represents the lowest denominator of all instances.
All other pre-defined classes inherit from entity. So adding a property to
entity will add it to every instance.

Entities cannot have an initial location, nor can they be located anywhere.
On the other hand, they can be considered to be available everywhere.
They are not described when encountered. They can only be shown by
explicitly executing a Describe statement.

So, if you want an instance to always be available but invisible, create an
instance of entity. It is also possible to create subclasses of entity.
Instances of such classes will follow the same rules.

Things

Thing is a pre-defined subclass of entity that adds the property of
having a location. This means that they can have an initial location and be
located to locations and into containers. They will, however not show up
in descriptions or listings, but the player can refer to and interact with
them. They can be described by explicitly executing a Describe
statement.

Creating an instance of thing is a good choice if you want an invisible
instance that should only be available at particular locations, or under
specific circumstances.

52 -

Alan Adventure System - Reference Manual

Note: Note that a thing can be put in a container, but that container
will not show any visible traces of that thing. It will be rendered
as empty if listed. The thing is however subject to other effects
of being part of a container, such as the removal rules and
selection by a random selection of items in the container. See
Random Values on page 133 for a description of random
selections of container items.

Objects

Objects are instances inheriting directly or indirectly from the predefined
class object. Objects are all the things that can be manipulated by the
player. They can be picked up, examined and thrown away (if the author
has allowed it). In addition to the properties inherited from thing, any
present object will by default, be described when the player enters a
location or otherwise encounters it.

Actors

The predefined class actor is intended for providing so called NPC:s,
non-player characters, in your game. Like the player, they can move
around but to do this they have to be scripted, i.e. programmed with some
behaviour using scripts.

An instance inheriting from the actor class will be described when
encountered. Actors can be located, as can any thing, but not be inside a
container. In addition, they can have scripts.

Actors also exhibit special behaviour when they are described, e.g. when
they are encountered. If an actor is executing a script with a description,
(see Script on page 82) this description will be used instead of the one
declared in the description clause.

- 53

Alan Adventure System - Reference Manual

The kirk Isa actor Name Captain Kirk At control_room
Has health 25.
Container

Header "Kirk is carrying"
Else "Captain Kirk is not carrying anything."

Description
"Your superior, Captain Kirk, is in the room."

End The kirk.

The george Isa actor
Name George Formby
Description

"George Formby is here."
Script cleaning.

Description
"George Formby is here cleaning windows."

Step ...
Script tuning.

Description
"George Formby is tuning his ukelele."

Step...
:

The Hero
There is one very special actor, the hero, which represents the player. This
actor is always pre-declared with some basic properties, so you don't have
to declare it. But if necessary, it may be re-declared in the same way as any
other actor.

One situation when this is required is if you need attributes on the hero,
such as “sleepy” or “hungry”. A declaration like the following can then be
used:

The hero Isa actor
 Name me
 Is Not hungry.
 Verb examine Does
 If hero Is hungry Then
 "Examining yourself reveals a poor, hungry soul."
 Else
 "You find nothing but a poor beggar."
 End If.
 End Verb examine.
End The hero.

The hero is predefined with a simple container property taking objects
with no limits. It seems natural to use that as the “inventory” of the player,

54 -

Alan Adventure System - Reference Manual

the storage for everything the player is picking up and carrying around.
You will probably need to handle carried items in some manner, and the
pre-declared container is one suggestion. You can also redeclare the
container property of the hero so that it suits your needs.

Locations

A location is a declaration of a place (a “room”) in the game that
(normally) can be visited by the player, and have objects lying around, etc.
In fact, the map of your game is a set of interconnected locations. A
location is any instance inheriting directly or indirectly from the predefined
class location. Inheriting from location implies the following semantic
properties:

• only locations can be visited by the player

• only locations may have the Entered-clause

• things and locations may be located to locations

• exits can only lead to locations and only locations can have exits

• the start location must be a location

• locations can’t have container properties

• verbs in locations are executed only when the hero is at that location

When a location is described (for example when entering it) it is presented
with a heading (the location name), the description (in the description
clause) followed by descriptions of any present objects and actors not
already, explicitly, described (using a describe statement) in the
description.

An interesting property of locations is that a location can be located at
another, both initially and during run-time. The result of having such
nested locations is that all things present at the “outer” location are also
present in the inner. This can be used in multiple levels to allow access to
sky, ground and other scenery items available at many locations at once. It

- 55

Alan Adventure System - Reference Manual

can also be used for grouping locations into sets of similar locations and
for implementing vehicles.

Literals

The classes literal, string and integer cannot be instantiated
explicitly. Instead, you might say that they are implicitly instantiated when
the player inputs a literal. For example

> turn dial to 12

The second parameter (see Syntax Definitions on page 84) in this player
command is the integer 12. This parameter is automatically considered an
instance of the pre-defined class integer.

It is possible to add verbs to literal and its sub-classes. This way it is
possible to create verbs that take strings and integers as parameters.

3.7 Properties

An instance or class can be given number of different properties by
declaring them in the declaration of the class or instance.

property = initial_location
 | name
 | pronouns
 | attributes
 | initialization
 | description
 | articles
 | mentioned
 | container_properties
 | verb
 | script
 | entered
 | exit

56 -

Alan Adventure System - Reference Manual

Attributes, exits, verbs and scripts can be repeated any number of times in
the same declaration. You cannot use the same identifier for more than
one such property, e.g. you cannot declare two attributes with the same
name.

Inheriting Properties

A property can be inherited from the parent of the class or instance. It is
not necessary to repeat the declaration in the inheriting class or instance if
it should retain its inherited value. Each inherited property may be
amended or overridden by specifying it also in the declaration of the
inheriting class or instance according to the following table.

Property Inherited as

Initial location Overridden

Name Accumulated, the inherited names are appended at the end of
the list of Name clauses

Pronoun Overridden, each pronoun clause inhibits inheriting pronouns
from the parent class.

Attribute values Overridden, attribute declarations using the same name as an
inherited can give the attribute a different value but must match
the type of the inherited.
Accumulated, you can add further attributes in a class or
instance.

Initialize Accumulated. Inherited initialize clauses are executed first so
that the base classes may do their initialization first.

Description check Accumulated.

Description Overridden.

Articles & Forms Overridden.

Mentioned Overridden. Also overrides names.

- 57

Alan Adventure System - Reference Manual

Property Inherited as

Container Overridden, all clauses are overridden.

Verb declarations Accumulated. Verb bodies are accumulated for verbs with the
same name as the inherited. Use qualifiers (see Verb
Qualification 97) if you don’t want all of them to execute.

Scripts Overridden, for same script name.

Entered Accumulated. Entered-clauses in nested locations are executed
from the outside in. Entered-clauses in parent classes are
executed first. So the first clause to be executed is the parent of
an outer location.

Exits Overridden, for same direction.

The table also show which properties are inherited separately from the
parent. E.g., you can override the description but keep the description
check, or even add another (since they are accumulated). You cannot
override the container limits and keep the header section since the
container property is overridden in its entirety.

In an inheriting class, you can also add new properties. More attributes,
verbs, exits and scripts can be added to those already present through the
inheritance.

The properties available for use in classes, and thus also for instances, are
described in detail in the following sections. In general, all of these can be
mixed freely, however, some semantic restrictions apply as to when a
particular property is or is not legal.

Initial Location

Where an instance will be located when the game starts is set using an
optional Where clause. If no such clause is used the instance will have no
location. An instance without location is not present (in the view of the
player) in the game until it is moved somewhere by a Locate statement.

58 -

Alan Adventure System - Reference Manual

initial_location = where

Only the At what and In what forms of the Where construct (see
WHERE Specifications on page 128) are allowed when describing an
initial location of an instance.

The chest Isa object At treasury
…

An instance inheriting from location cannot have an initial location that
is In something, but it can be At some other location, creating a nesting of
locations.

Names

By default, the identifier (“author name”) for an instance is also the name
shown to the player, and by which he will be able to refer to it. Normally
you would want to override this with more elaborate and alternative
names. You can do that using the Name clause.

name = ‘NAME’ id {id} [‘.’]

The Name clause consists of a list of identifiers optionally followed by a full
stop.

The identifiers given in the Name clause is used when the instance is
presented to the player and which the player can use to refer to it. For
example

The south_door Isa object At south_of_house
 Name door
 …
The south_of_house Isa location
 Name ‘South of House’
 …

- 59

Alan Adventure System - Reference Manual

The quoted identifier used in the last example makes the name be one
single text string. See Words, Identifiers and Names on page 143 for an
explanation of this. This works for locations, which a player usually does
not need to refer to, but for things the player should interact with, a more
sophisticated mechanism is available.

The chair3 Isa object
Name little wooden chair

In this example, the name is a sequence of words. The semantics of this
declaration is that the word “chair” is a noun and “little” and “wooden”
become adjectives. When the player, in a command, want to refer to the
object with the author name (identifier) chair3, he may use just “chair” if
it is the only accessible object with “chair” as its noun, or he may
distinguish between multiple chairs by also giving one or more adjectives
to be more precise about which chair he meant.

Note: The Name clause hides the author name, so in the example, the
player will not be able to use chair3 to refer to the instance.

Note: An explicit Mentioned clause will override the names for
presenting the instance.

It is possible to give an instance multiple names by listing a number of
name clauses. Each one will define adjectives and a noun as described
above. The result is that the player can use any of the names to refer to the
object. For example:

The rod Isa object At grate
Name rusty rod
Name dynamite

...

This would allow the player to refer to the object using either ‘rusty rod’ or
‘dynamite’. (Or as a side effect ‘rusty dynamite’.) The first name clause is
used for building a default description, if necessary (see Description on
page 68).

60 -

Alan Adventure System - Reference Manual

The character case used in any word is retained for output, but player
input will always be matched without considering case. This way you can
e.g. give capitalized names to people giving a correct output.

Inheriting Names
Names can of course be inherited. This is done in an additive way so that
any names inherited are appended to the Name clauses in the declaration.
This ensures that the class or instance itself can control the primary name
(the first Name clause). In addition, this has the effect that an instance
inheriting from a class defining a Name will be possible to refer to also
using the inherited name(s). Here is an example with fruits:

Every fruit Isa object Name fruit …
Every apple Isa fruit Name apple …
Every pear Isa fruit Name pear …
The gravensteiner Isa apple …
The macintosh Isa apple …

In this example, both the pear and the apple would be possible to refer to
using the word “fruit”. Both the gravensteiner and the macintosh would
be apples, not only by name, but also by all other properties of apples.

Displaying Instances
When an instance is to be shown to the player, it must be displayed in
form of text. An instance can be printed in several different ways, it can be
described or only mentioned. A description of an instance is a complete
and usually more elaborate description of it (see Description on page 69).
However, often an instance must be mentioned as a part of a sentence, or
in a list.

Such a mentioning of an instance will involve the articles, the name and
possibly the Mentioned clause.

The basis for this mechanism is the short form, which by default is the
first of the Names. It will, however, be overridden by any existing
Mentioned clause (see Mentioned on page 74).

- 61

Alan Adventure System - Reference Manual

The short form can be automatically transformed to a description (for
instances that have no Description) by inserting the article (see Articles
and Forms on page 71) and the short form in a default message. In the
following example, output of the article is underlined and the short forms
are emphasised, the rest is the default message templates.

There is a little black book, a green pearl and an owl here.

The interpreter also uses this principle when constructing lists of instances
in container content lists (as the result of the execution of an implicit or
explicit List statement, see page 112).

Pronouns

In player input, it is often handy and natural to refer to items using
pronouns, such as “it”, “them” or “her”. Alan provides a means to define
with which pronouns each instance can be associated.

pronouns = ‘PRONOUN’ word { ‘,’ word }

The effect of associating a pronoun with an instance is that the player can
refer to that instance explicitly in one command and then in a subsequent
command use that pronoun to refer to it again. Assume the player input

> ask the priest about the bible

If the priest has been associated with the pronoun “him” and the bible
with the pronoun “it”, the next command could be

> give it to him

Pronouns are inherited as any other property, but are overridden as soon
as a pronoun clause is present.

62 -

Alan Adventure System - Reference Manual

Note: The pre-defined class entity defines the pronoun “it” (or
equivalent for other supported languages).

Attributes

An attribute is a labelled value that instances have. The declarations of
attributes are placed inside a class definition (in which case it will apply to
all instances of that class or instances of any sub-class of it) or inside an
instance declaration (in which case only this instance will have it, unless it
overrode an already inherited attribute with new values). An attribute
declaration, or a set of declarations, is introduced using one of the
keywords:

is = 'is'
 | 'are'
 | 'has'
 | 'can'

And the actual of an attribute follows the structure:

attribute_declaration = id
 | ‘NOT’ id
 | id integer
 | id string
 | id id
 | id ‘{’ values ‘}’

An attribute can be of Boolean (having truth values), numeric, string,
event, instance or set type. The type of an attribute is automatically
inferred from the type of its initial value.

Combining the keywords with well chosen attribute names can give natural
reading to your attributes:

The rats Are hungry
The cowboy Can shoot
The chest Is heavy
The combination_lock Has numbers {1,2,4,8}

- 63

Alan Adventure System - Reference Manual

Attributes that you want every instance of a class to have must be declared
in that class. E.g. to declare a Boolean attribute that all instances of the
class animal will have in common, the following code can be used:

Every animal …
 Is

 Not human.
…

The attribute human will now be available in all instances of the class,
without further declarations, and it will be false. If you want the attribute
to have another value in a particular instance, you must declare it
specifically in that instance and give it its desired value, which will be
effective only for that instance. You can override the value in a subclass,
e.g.

Every person Isa animal …
 Is

 human.
…

Boolean Attributes
A Boolean attribute is declared by simply giving the attribute name, or the
name proceeded with the keyword Not (indicating a FALSE initial value):

thirsty.
Not human.

Numeric and String Attributes
Numeric and string attributes are declared by simply typing the value after
the attribute name:

weight 42.
message "Enter password:".

Note that string valued attributes are mainly intended for saving string
parameters from the player input, like in

> scribble "Kilroy was here" on the wall

64 -

Alan Adventure System - Reference Manual

It is not intended for keeping long strings of descriptions, especially not as
attributes to classes, as they (in the current implementation) require
memory and takes time to initialise when starting the game.

Event Attributes
Attributes can refer to events. Such an attribute is declared by giving the
identifier of an event as its initial value.

Event e1
 "This is e1 running."
 Set e Of l To e2.
End Event.

The l Isa location
 Has e e1.
End The l.

An attribute of the event type can for example be used to dynamically
remember which event is scheduled, so that it can be cancelled.

Reference Attributes
Reference attributes stores references to instances. Such an attribute is of
instance type; the class is determined by the class of the initial instance that
the attribute is referring. You may for example store a reference to the
other side of a door.

The east_door Isa door.
Has otherside west_door.

…

You must initialize a reference attribute with a reference to an instance
belonging to a class having the required properties. Any subsequent
assignment to the attribute will require that the new value is a member of
the same class or a subclass of it. This ensures that operations on instances
referenced by that attribute will always be possible.

Inside a class declaration, reference attributes may be initialized with a
class identifier instead of a reference to an instance. This makes the
attribute an abstract attribute, since it is defined but not initialized. Any

- 65

Alan Adventure System - Reference Manual

instances inheriting from this class must then initialize the attribute, either
explicitly or indirectly (by initializing it in an intermediate class). E.g.

Every door Isa object …
 Has otherside door.
End Every door.

The east_door Isa door.
Has otherside west_door.

…

Note: If you need to set the initial value to refer to an instance of a
sub-class of the actual class you want to allow, you can use an
instance of the required class in the declaration and set its
correct initial value in the Start or Initialize sections.

Set Type Attributes
A Set is an unordered set of integers or instance references. Initial
members must be listed in the declaration of the Set. See Set Type on page
46 for details on the Set type.

The type and class of allowed members is inferred from the values actually
in the initial set. If they are instance references, the common ancestor of
all members is used as the class of the allowed members. An empty set is
only allowed as an initial value if the attribute is an inherited attribute since
in this case, the member class is known from the inheritance and need not
be indicated in the declaration.

You can also initialize a set type attribute with a set consisting only of a
single class identifier. This will create an empty set with instance type
members restricted to that particular class.

Note: If you require an initially empty set of another type, e.g.
integer, and you cannot give the member class by inheriting it,
you can initialize the set with a single value of the correct type
and remove that value in the Start or Initialize sections.

66 -

Alan Adventure System - Reference Manual

Inheriting Attributes
Attributes can be inherited like any other property. A declaration of an
attribute with the same name as in any of the parents of the instance or
class, will inherit the type of the attribute, you cannot change it in
subsequent declarations. This means that any declaration of a different
initial value than the inherited must follow the rules of type compatibility
for assignment. (See Type Compatibility on page 47.)

This also applies to classes of instances in the reference and set types
attributes. Both these types allow references to instances. The initial value
given at the point where the attribute is introduced determines the
required class of the set members or referenced instances. This is retained
throughout the complete inheritance of that attribute even if a subsequent
initial value would imply a more specialised class. An example:

Every door Isa object
 Has otherside someDoor.
End Every door.

Every lockable_door Isa door.
 Has otherside someLockableDoor.
End Every lockable_door.

The someDoor Isa door
 Has otherside someLockableDoor.
End The someDoor.

The someLockableDoor Isa lockable_door
 Has otherside someDoor.
End The someLockableDoor.

In this example, the reference attribute otherside is introduced in the
class door. Its initial value is referring to the class door. This makes the
attribute refer to doors. In the subclass lockable_door the attribute is
used with another initial value, here it refers to a subclass of door. Despite
this, the attribute in the two door instances will allow reference to doors,
as indicated by the first declaration (in the class door).

As a contrast, the same example can be used with abstract reference
attributes (reference attributes that are defined, but not initialized, in the
class declaration).

- 67

Alan Adventure System - Reference Manual

Every door Isa object
 Has otherside door.
End Every door.

Every lockable_door Isa door.
 Has otherside lockable_door.
End Every lockable_door.

The someDoor Isa door
 Has otherside someLockableDoor.
End The someDoor.

The someLockableDoor Isa lockable_door
 Has otherside someDoor.
End The someLockableDoor.

Now the class declarations refer to classes instead of instances in their
declaration of the otherside attribute. This changes the semantics so that
the subclass indicated by lockable_door actually makes it illegal to use a
door as the declaration in someLockableDoor does, instead a
lockable_door is required.

Using abstract reference attribute declarations in class declarations allows
you to progressively refine the class of the instances that that attribute may
refer to.

Initialize

The attributes of an instance can be initialized using values in the attribute
declaration. This is usually sufficient for many situations. For more
flexibility, the Initialize clause can be used.

initialize = ‘INITIALIZE’ statements

The clause makes it possible to execute arbitrary statements before the
game is started. The statements are executed before the Start clause is
executed. This enables calculation of more complex initial attribute values
to be located within the instance, or class, that requires it. Of course
general statements are also allowed so any prerequisites can be catered for.

68 -

Alan Adventure System - Reference Manual

Initialize
 Set first_course of This To Random In first_courses Of menu.
 Set second_course of This To Random In main_courses Of menu.
 Set third_course of This To Random In desserts Of menu.

The current location is set to the start location, and the current actor is the
hero during the execution of all Initialize clauses.

If the Initialize clause is inherited it will accumulate all clauses with
clauses from base classes executing before the clause from the subclass.
This lets the base classes do their initialization before the initialization of
the more specialized, class or instance is performed.

Description

The statements in the Description clause should print a description of
the instance. These statements are executed when the hero encounters the
instance. Depending on from which base class the instance inherits this
can be a location description presented when the hero enters the location
or when executing a Look statement. Other possibilities are descriptions of
objects and actors. See sections 3.6 Instances on page 50 for descriptions
of what inheriting from the predefined base classes means.

Note: The description should not change any game state since it
might not always be executed depending on the settings of the
Visits. In particular, the description of a location should not
move the hero; this might lead to a recursive loop of
descriptions. This might instead be managed by the Entered
clause.

See also Special Statements on page 125, concerning the Visits
statement.

The syntax for simple descriptions is:

description = ‘DESCRIPTION’ {statement}

- 69

Alan Adventure System - Reference Manual

If the Description clause is missing for an instance (and no description
is inherited), the Alan system will supply a default description such as
“There is a round ball here.”. If there is a Description clause but it
contains no statements, the object will be ‘invisible’, i.e. no description of
it will be printed, not even a default one. This can be useful for objects
already described by the location description, or of objects with particular
properties.

Here are some examples of simple description declarations
The south_of_house Isa location

Name ‘South of House’
Is outdoors.
Description

"You are facing the south side of a white
 house. There is no door here, and all the
 windows are barred."

…
The door Isa object

Description
"In the north wall there is a large wooden
 door."
If door Is closed Then

"It is closed."
End If.

…

Before executing a description, you can check for various conditions to be
met. A common example is the dark room. If there is no light source
present, the description should not be printed. The syntax for such a
description is

description = ‘DESCRIPTION’ [checks] [does]

You can guard the description with a check in the same form as with verb
bodies (see Verb Checks on page 93 for a detailed description of checks).
Of course, there are no qualifiers possible here. To be able to separate the
checks statement from the actual description statements the keyword Does
is required. This is an example of the checks for a dark location:

Every dark_location Isa location
Description

Check Sum Of light_source Here > 1

70 -

Alan Adventure System - Reference Manual

Else “It is pitch black. You are likely
 to be eaten by a grue.”

End Every dark_location.

Note that it does not specify any description statements. This is because
the checks and the actual description are inherited separately, as described
in the table on page 56. The actual descriptions are left for the instances.

If multiple description checks are available in the inheritance chain, they
are all tested and must be met before any description is attempted. So the
inheritance of description checks is “additive”.

If any check fails, the description will not be executed. This particularly
also implies that the default listings and description of present objects and
actors in location instances will not occur either. Note, however, that any
events and actor actions will be shown. See Locations below for a
description of default description mechanism for locations.

If neither a check nor any description statements occur after the keyword
Description this is a description, but it is empty.

Note: You should not put statements that changes game state in the
Description clause. Descriptions can be executed in various
circumstances that the game author has no control over.
Consider Exit statements and the Entered clause instead.

Articles and Forms

forms = indefinite | definite | negative
definite = ‘DEFINITE’ article_or_form
indefinite = [‘INDEFINITE’] article_or_form
negative = ‘NEGATIVE’ article_or_form
article_or_form = ‘ARTICLE’ {statement}
 | ‘FORM’ {statement}

The optional definite, indefinite and negative articles and forms can be
used to define how an instance is printed in its indefinite, definite and

- 71

Alan Adventure System - Reference Manual

negative forms. There are two cases for each form, either as an article
prepended to the short display form of the instance (its names or
Mentioned clause), or a complete form replacing the normal name
printing.

Indefinite forms are used in e.g. inventory listings and when presenting
instances that have no Description clause. Definitive forms are usually
used in messages of the type:

The door is locked.

The negative forms are used in standard messages of the type:

I can’t see any door here.

Articles and Forms can of course, be inherited.

Note: The predefined base class entity defines the default definite,
indefinite and negative article to be “the”, "a" and “any” (if
using English). You may override this by using an Add
statement.

Articles
Printing the indefinite (or definite or negative) form of an instance having
an indefinite (or definite or negative) article is simply performed by
executing the article statements and then the normal printing of the
instance, usually the first set of names.

For example
The owl Isa object

Indefinite Article "an"
:

This results in output like

There is an owl here.
You are carrying an owl.

72 -

Alan Adventure System - Reference Manual

An article is not used when the instance is displayed when acting on
multiple objects, as in:

> take everything
(owl) Taken.

For instances that should not have any article at all, like ‘some money’, or
‘mr Andersson’, an Indefinite Article clause containing no
statements must be used:

The money Name some money
Article

:

Instead of

There is a some money here.

This will lead to the expected:

There is some money here.

Form
If an instance has a Definite (Indefinite or Negative) Form, either
through declaration or inheritance, the printing of its definite, indefinite or
negative form will be by executing the corresponding statements only; no
article declaration is involved. In this way, the author gets complete
control over the spelling and inflection of the instance name in definite,
indefinite or negative forms. Some human languages will probably require
more use of the Form form (like Swedish), and some less (like English).
The forms are particularly useful if the natural language used, have
different forms of the noun itself in definite an indefinite forms. An
example is the Nordic languages, which use definite suffixes instead of
articles.

The Article and Form are inherited as one property. That means that an
instance may override its inherited form using either of the forms
regardless of how its parent defined the form.

- 73

Alan Adventure System - Reference Manual

Printing
You can use various forms of the Say statement (see Say on page 111) to
choose in which form the instance will be presented. In addition, the
embedded parameter references allow selection of the form (String
Statement on page 109).

Mentioned

The optional Mentioned clause overrides the name for displaying an
instance in a short form that will be used when the instance is mentioned
e.g. in listings of containers or when the all form of player input is used.
A typical use of the Mentioned clause is to let some internal state of the
instance be reflected in the short form, e.g. if you want the short form of a
box to show if it is open or closed you cannot rely on the Names since
they are static. Instead, the Mentioned clause can print a different short
name depending on an attribute.

mentioned = ‘MENTIONED’ {statement}

For example:
Mentioned

If mirror Is broken Then
"broken"

End If.
"mirror"

...

> take all
(little black book) OK!
(green pearl) OK!
(broken mirror) OK!

Note: A mention clause declared on a class will override the names of
any instance that inherits from it.

74 -

Alan Adventure System - Reference Manual

Container Properties

An instance can also be a container. This is declared by means of the Con
tainer property clause. The grammar is

container_properties = [‘WITH’] [‘OPAQUE’] ‘CONTAINER’
 [‘TAKING’ id]
 [limits]
 [header]
 [empty]
 [extract]

For example
The chest Isa object

With Container
Limits ...
Header ...

Description ...
:

End The chest.

A container is something that can contain instances. By default, the
instances it can contain must be inheriting from the base class object, but
by using the Taking clause, you can allow any instances.

Instances with the container property, “inherits” a special, predefined,
Boolean attribute, opaque. This attribute can be manipulated in the same
way as any other attribute. Its current value indicates if the instances inside
the container are visible and accessible or not.

By default, containers expose their content, but by placing the keyword
Opaque in the container declaration, you indicate that this container
declaration will initially prohibit access to the contained instances. A
typical use of this is to prohibit access to contents of closed cases, drawers
and boxes. Once open such containers usually reveal the content, which
then can be accessed. You can implement such behaviour by modifying
the built in opaque attribute. For example:

- 75

Alan Adventure System - Reference Manual

The drawer Isa object
 With Opaque Container
 Header “The drawer contains”
 Verb open
 Does
 Make drawer Not opaque.
 List drawer.
 End Verb.
End The drawer.

Note: If you want to hide the content of a container, you have to take
care so that a List statement is not executed while the
container is opaque since this will reveal the content. You can
check the state of the opaque attribute like any other Boolean
attribute.

Note: The predefined opaque attribute is only available in instances
and classes having the container property.

When an instance with the container property is encountered during game
play, it will be described as usual. If the instance has a default description
the content of the container will be listed if it is not empty and not
opaque.

Limits
The Limits clause of the container property declaration put limitations on
what and how much can be put in the container.

limits = ‘LIMITS’ {limit}
limit = limiting_attribute ‘ELSE’ {statement}
limiting_attribute = attribute_definition
 | ‘COUNT’ integer

If any of these limits are exceeded when trying to locate anything inside
the container, the statements in the corresponding Else-part will be
executed and the players turn aborted. In fact, these checks are performed
because of the execution of a Locate statement (usually as a result of the
player issuing a command with the intent of placing something in a

76 -

Alan Adventure System - Reference Manual

container). This means that the execution of a sequence of statements can
actually be interrupted in the middle by these limitations.

The specification of an attribute, which must be a numeric attribute on the
class the container takes (by default object), implies that the sum of this
attribute of all objects in the container cannot exceed the value specified.
The special attribute Count can be also be used and indicates a limitation
on the number of instances allowed.

Container
Limits

weight 50 Else "You can not lift that much."
Count 2 Else "You only have two hands!"

Note: The Count limit considers all instances in the container. This
might differ from the number of instances listed e.g. if the
container takes Things (which are not 'visible').

Container properties are inherited in its entirety. Locations can’t have
container properties.

Header and Else

header = ‘HEADER’ {statement}
empty = ‘ELSE’ {statement}

Header is used when the contents of the container is listed. It is intended
to produce something like

"The box contains"

or

"You are carrying"

It is followed by a list of instances mentioned. Section Mentioned on page
74 describes this listing.

The Else-part is used instead of the header if the container is empty.

- 77

Alan Adventure System - Reference Manual

If Limits or Header is missing, the Alan system supplies the default of no
limits, and the messages output will be equivalent with

Header
 “The <container> contains”
Empty
 “The <container> is empty.”

(<container> is replaced by the actual name of the instance.)

Extract
The Extract clause defines what happens when anything is extracted
from a container. Any Locate statement that moves an instance out of a
container is considered an extraction. The extraction will be subject to the
restrictions enforced by the Extract clause.

extract = ‘EXTRACT’ [check] [does]
 | ‘EXTRACT’ {statement}

The extract clause, including optional Check and Does clauses, allows
prohibiting the extraction of the item from the container depending on
some condition. If the Check is present, it works the same way as for
Verbs (see Verb Checks on page 93). I.e. a Check without a guard
expression will unconditionally prohibit extractions; a Check with an
expression will evaluate that expression and, if false, execute its Else
clause, and then abort the move. The Does clause will be executed if the
optional Check passes, or there was no Check.

An Extract clause without a Check, but with a Does-clause, executes the
Does-clause and then allows the extraction to take place. So, in a way,
Checks, if triggered, prevents the extraction, and the Does-clause amends
to it, being an extensions of the normal case, much like the Check and
Does-clauses for Verbs (see section 3.10 Verbs on page 92). The second
form of the clause, with just the statements, is equivalent to an Extract
with only a Does-clause.

78 -

Alan Adventure System - Reference Manual

An example use of the Extract clause is to prohibit, put restrictions on,
or modify the behaviour when the hero attempts to take things carried by
another actor.

The waiter Isa actor
 At bar.
 Is Not annoyed.
 Description
 "A slow-moving, traditionally dressed waiter is here."
 List waiter.
 If waiter Is annoyed Then
 "He is rather annoyed."
 End If.
 Container
 Header "The waiter is carrying"
 Else "The waiter is empty-handed."
 Extract Does "The waiter is annoyed by your presupposition."

 Make waiter annoyed.
End The waiter.

Verbs

Verbs declared inside an class or instance are inherited in the same way as
other properties. See section 3.10 Verbs on page 92 for a description on
how to declare verbs.

The verbs in a class or instance will only be a candidate for execution if the
instance bound to a parameter is of the corresponding class, or is the
instance. See Verb Execution on page 97 for a detailed explanation.

Entered

entered = ‘ENTERED’ {statement}

The Entered clause is only allowed in instances inheriting from the
predefined class location. This clause will be executed whenever any
actor enters the location. Game state changes can be made without
restriction.

- 79

Alan Adventure System - Reference Manual

However, the Entered clause is primarily intended for setting up the
location in a correct way, not for describing events, actions and states
changes. For this the Description-clause is recommended.

The Entered clause can also be used to restrict the movements of actors
other than the Hero. (The hero's travels are controlled by exit checks as
described in Exits on page 81).

If some of the statements should only apply to a particular actor, it is
possible to test for the Current Actor with a simple If statement.

The actor is located at the location before the clause is executed so
Current Location will be the location having the clause.

Entered clauses are inherited and locations can be nested (see section
Locations). The order of execution is explained by the following table:

Outer Region … Current Location

Base class Outermost

:

Leaf class

Instance

This means that the first Entered clause to be executed is the clause in the
base class of the outermost location, if any, then moving down the
inheritance of the outermost. After that any parent classes for any
intermediate locations are considered in the same way. Finally running any
Entered clauses in the parents of the new location, ending with the clause
in the location itself.

Note: The Entered clause is only executed when the actor is entering
the location. This goes for all actors, not only the player/hero.
The actor will be at the location when the clause starts to
execute.

80 -

Alan Adventure System - Reference Manual

Note: If it is the Hero that is moving, the Description, including the
normal header containing the location name, of the new
location will be executed directly after the Entered clause.

Exits

To build a traversable world of locations, they must be connected. This is
done using exits. The syntax for an exit declaration is

exit = ‘EXIT' id {‘,' id} ‘TO' id [exit_body] ‘.'
exit_body = [checks] [does] ‘END' ‘EXIT' [id]

An exit has a list of identifiers, all of which are considered directional
words. I.e. when any of those words is input by the player, he will be
located at the location identified as the target of the exit. It is possible to
customize the exit using a Check, that must be satisfied to allow passage
through the exit, and statements (Does) that will be executed when the
player passes through. The checks work as described in Verb Checks on
page 93.

If either of the Check or Does clauses is present, the End Exit is
required.

Two interconnected locations might be declared like:
The east_end Isa location Name ‘East End of Hall’

Description
"This is the east end of a vast hall. Far
 away to the west you can see the west
 end."

Exit w To west_end.
End The east_end.

The west_end Isa location Name ‘West End of Hall’
Description

"From this western end of the large hall it
 is almost impossible to discern the
 opposite end to the east."

Exit e To east_end.
End The west_end.

- 81

Alan Adventure System - Reference Manual

Note: If an exit is declared from one location to another, and you
want there to be an exit in the opposite direction, you have to
define the reverse passage. It is not created automatically.

Exits are only allowed in classes or instances inheriting from the pre-
defined class location.

Scripts

The Script is the actor’s way of performing things. In a way, it
corresponds to what the hero is ordered to do by the player’s typed-in
commands.

script = ‘SCRIPT' id [‘.'] [description] {step}

Every script has an identifier (the id) to identify it. A script is selected by
the Use statement. When an actor is started following a script, it will
continue with one step after the other, with all the other actors, including
the hero, taking turns.

The optional description allowed in the beginning of a script is used
instead of the general description (from the instance declaration) whenever
the actor is executing that particular script. If it is not present, the general
description is used.

Actor george
Name George Formby
Description "George Formby is here."
Script cleaning.

Description
"George Formby is here cleaning windows."

Step ...
Script tuning.

Description
"George Formby is tuning his ukelele."

Step...
:

An actor continues executing its script until

82 -

Alan Adventure System - Reference Manual

• it reaches the end

• another Use statement is executed for that actor

• the actor is stopped using the Stop statement

• something fails

Note: There are a few things that might fail when an actor executes.
One example is an extract, which means that something is
removed from a container. As container may define extract
checks that action might be prevented. This means of course
that that step is aborted, but also that the actor is automatically
stopped, so no further steps from the script will be run. The
author is responsible for handling this, e.g. by using rules to
ensure that the condition is detected and handled correctly.

Steps
A script is divided into steps. Each step contains statements representing
what the actor will do in what corresponds to one player move. A step can
be defined to be executed immediately next move, to wait a number of
moves before it is executed or even to wait for a special situation
(condition) to arise.

step = ‘STEP’ {statement}
 | ‘STEP’ ‘AFTER’ expression {statement}
 | ‘STEP’ ‘WAIT’ ‘UNTIL’ expression {statement}

For example
Step Wait Until hero Here

Locate waiter Here.
"From the shadows a waiter emerges: $p

’-Bonjour, monsieur’, he says."
Step After ticksLeft Of train

“The train driver enters the train, and after a brief
 moment the train starts to move.”

- 83

Alan Adventure System - Reference Manual

When an actor has executed the last step of the current script, it will do
nothing more until the next Use statement is executed for this actor (the
actor will not act, but still present at the location where it was). If this is
not what you wanted, you can end each script with a new Use statement.

3.8 Additions

In certain circumstances, you need to add properties to a class after it is
defined. One simple such example is to add attributes to the predefined
classes. To allow this the Add construct is available. It follows the grammar

addition = ‘ADD’ ‘TO’ ‘EVERY’ id
[inheritance]
{property}

 ‘END’ ‘ADD’ [‘TO’] [id] ‘.’

Using this construct, you can add any property to a class without having
access to its declaration. A standard library would make heavy use of this
since it would be structured so that related verbs, their syntax and
synonyms are packaged together. If such a package required particular
attributes in classes, they could be added using the Add construct.

3.9 Syntax Definitions

The syntax construct is used to specify the allowed structure of the input
from the player. Each definition defines the syntax for one Verb. The
effects triggered by the player input are declared using the Verb construct
(see Verbs on page 92).

syntaxes = ‘SYNTAX’ {syntax}

syntax = id ‘=’ {element} syntax_end

84 -

Alan Adventure System - Reference Manual

element = id
 | ‘(’ id ‘)’ [indicator]

syntax_end = parameter_restrictions
 | ‘.’

The syntax is defined as a number of syntax elements each being either a
player word (a single id) or the name of a parameter (an identifier
enclosed in parenthesis). Parameters may be in any position, including the
first, a syntax with only parameters might be tricky for the interpreter to
match to your intentions, as the complete set of allowed input then easily
becomes ambiguous.

Syntax
quit = ‘quit’.
examine = ‘examine’ (obj).
command_north = (act) 'north'.
unlock_with = 'unlock' (l) 'with' (k).

When the player types a command, it is compared to the set of declared
syntaxes. This provides a very flexible way to extend the allowed
command set (see also Player Input on page 150 for details on general
player input).

After the player input has been matched to an allowed syntax, the
parameters are bound to the instances referred to by the player. The
parameter identifiers in the syntax declaration then refer to those entities.
Reference to attributes etc. will be done in the instance referred by the
parameter.

Syntax open = open (obj).
:

If obj Is open Then …
:

In the example above, the parameter, obj, can be used in the declaration
of the open verb and will, at execution time, refer to such a bound
instance. The following table explains which instances in the game a
parameter identifier (l & k, from the unlock_with syntax above) will
actually refer to.

- 85

Alan Adventure System - Reference Manual

Player input l k

> unlock the door with the key door key

> unlock the bottom drawer with the
rusty knife

bottom
drawer

rusty knife

> unlock the skeleton with the tiny
blue chair

skeleton tiny blue
chair

This, of course, provided that there is an instance that will match the
player input, given the adjectives and nouns in the input and in instance
declarations.

It is allowed to define multiple syntaxes for the same identifier (verb). See
section Syntax Synonyms on page 90.

Indicators

Following a parameter, indicators are allowed in syntax declarations.

indicator = ‘*’ | ‘!’

There are two indicators available:

‘*’ This parameter can reference multiple instances (for example
by the player using all or concatenating a number of
parameters using a conjunction like and, see Player Input on
page 150).

‘!’ The parameter (the instance the player refers to in this
position in the syntax) need not be present at the current
location. The default case is that the Alan interpreter requires
that a referenced instance must be present at the same location
as the hero (if the parameter inherits from thing. Note that
entities are always accessible). For cases when the player

86 -

Alan Adventure System - Reference Manual

must be able to refer to objects and actors that are not present
(e.g. in a verb like talk_about) this omnipotent indicator can
be used to force the interpreter to accept references to any
object or actor.

An example
Syntax

take = ‘take’ (obj)*.
drop = ‘drop’ (obj).

This shows the syntax definitions for the verbs take and drop. take also
allows multiple objects. This would make the following inputs possible

> take everything except the pillow

> drop the vase

Refer to Player Input on page 150 for details on the input of references to
multiple parameters (such as objects). The above declarations would force
the interpreter to reject player input like

> drop the shovel and the bucket

This is because the syntax for the verb drop does not allow multiple
references by not including the multiple-indicator. Another example using
the ‘!’ indicator:

Syntax
talk_about = ‘talk’ ‘to’ (act) ‘about’ (subj)!.
find = ‘find’ (obj)!.

Even if the robber or the key is not present, it will allow the player to say

> talk to the policeman about the robber

> find the key

For more information on player inputs, refer to Player Input on page 150.

Indicators given in one syntax declaration can affect other syntaxes if they
have identical beginnings, like

- 87

Alan Adventure System - Reference Manual

> put everything on

and

> put everything on the table

Even if only one of the syntax declarations indicate that the first parameter
should allow multiple instances, both syntaxes will actually allow this
because they have the same syntax part before the parameter, in this case
the verb “put”.

Parameter Restrictions

To restrict the types of entities the player may refer to in the place of a
parameter, its class can be defined by using explicit test in the syntax
declaration.

parameter_restrictions = ‘WHERE’ restriction
{‘AND’ restriction}

restriction = id ‘ISA’ restriction_class
‘ELSE’ {statement}

restriction_class = id
 | ‘CONTAINER’

Note: Any predefined or user defined class can be used. Particularly
note that integer and string are pre-defined classes (see The Pre-
defined Classes on page 32).

The following example describes the syntax for a verb that only allows
objects as its parameters (this is however also the default, see below).

Syntax
take = ‘take’ (obj)

Where obj Isa object
Else "You can’t take that."

Each parameter may be restricted to refer only to instances of particular
classes or instances with the container property, or numeric or string

88 -

Alan Adventure System - Reference Manual

literals. The statements following the Else will be executed if that
restriction is not met, i.e. if the player refers to an instance not in the
specified class or classes. The default restriction is Object, i.e. if no class
restriction is supplied for that parameter identifier the player may only
refer to objects at that position in his input.

A more elaborate example of prerequisites for conversation might look
like:

Syntax
talk_about = ‘talk’ ‘to’ (act) ‘about’ (sub)!

Where act Isa actor
Else "Don’t you think talking to a person

 might be better?!?!"
And sub Isa subject

Else
Say act. "does not know anything about

 that."
...

You can combine multiple restrictions, even for the same parameter. If
they refer to the same parameter, they must be successively more
restricted.

For example:
Where obj Isa object Else …

And obj Isa openable_object Else …
And obj Isa door Else …

References to attributes in the source are only allowed if it can be
guaranteed that they exist during run-time. The class restrictions placed on
a parameter are used by the compiler to make this guarantee for code
executed by player input (verb bodies). The same applies for other
semantic restrictions, e.g. you can only use a parameter in a List
statement if it has been restricted to having the container property.

You can use Isa Container to restrict instances to only those entities
that are containers (have the container property).

If there is no restriction for a parameter, it is restricted to the class
object.

- 89

Alan Adventure System - Reference Manual

Syntax Synonyms

It is possible to create multiple syntax declarations for the same verb. The
semantics of this is that any of the input formats will be accepted and
trigger the same verb action. This is a way to define syntactical synonyms,
which are useful to allow multiple forms of input for the same action,
increasing chances that the player will find the correct form. For example:

Syntax give = give (o) to (p) …
Syntax give = give (p) (o) …

The syntaxes must be compatible in the sense that the parameters must be
named the same. However, the order of the parameters may differ, they
will automatically be mapped as appropriate.

Restrictions are only allowed in the first of such syntax declarations. These
restrictions will be applied regardless of which syntax was used.

Default Syntax

If no Syntax is defined for a Verb at all, this is handled with one of two
default syntaxes according to the two templates below:

Syntax <1> = <1>.
Syntax <1> = <1> (<2>).

The place-holders represents 1) the name of the verb, and 2) the class in
which the verb is first encountered.

The first template is used for verbs that are declared globally, i.e. outside
of any class or instance. Since these are only applied when no parameters
are used, this will effectively work for simple ‘verb-only’ Verbs, such as
quit, look, save etc.

Verbs declared in an instance or a class, for which there is no syntax, by
default receives a syntax of the common verb/object type corresponding
to the second template above. This is a reasonable syntax for many cases
and restricts the parameters to instances of the class where the verb was
declared. It also implies that the default name for the single parameter is

90 -

Alan Adventure System - Reference Manual

the same as the name of that class, e.g. object, actor, thing, etc. (See
WHAT Specifications on page 130 for the implications of this.)

Note: A verb which is declared in a number of classes, or instances of
various heritage, can not be handled with the default rules, since
that would imply that the parameter should be restricted to
multiple classes at the same time. This case must be handled
explicitly.

Note: A verb with no declared syntax, which is declared in a location,
will receive a default syntax restricting the parameter to the
class location, which probably is not what you wanted.

Scope

If the player inputs a command following a syntax which requires
parameters, the interpreter first determines if the referenced instance is in
scope. This is performed even before the restrictions are executed.

There are a number of ways to get an instance into scope:

 Instances of entity, and of any user defined subclasses thereof, are
always in scope.

 An instance of thing and its subclasses at the current location,
including any nested locations, is in scope.

 An instance of any class inside a container that is in scope is in scope,
unless that container is opaque and closed. See Container Properties
on page 75 for details.

 If the syntax indicated a parameter as omni-potent, any instance is in
scope for that parameter position.

If the interpreter finds multiple instances matching the input (the set of
given adjectives and noun), it will try to disambiguate with preference to

- 91

Alan Adventure System - Reference Manual

instances present, i.e. at the location of the hero. If there still are multiple
candidates after this, the interpreter will print a message and abort
execution of the current command.

When all parameter positions in the syntax have been resolved in this way,
the restrictions are executed.

3.10 Verbs

verb = ‘VERB’ id {‘,’ id}
 verb_body
 ‘END’ ‘VERB’ [id] ‘.’
verb_body = simple_verb_body
 | {verb_alternative}
simple_verb_body = [check] [does]

A verb declaration specifies what to check and the effects of something
the player does (i.e. commands using a syntactically legal input).

Verb take, get
...

End Verb take.

Verbs can be declared at two different levels, global (outside any other
declaration) or inside a declaration of a class or instance, including inside
an Add construct.

A global declaration will only be considered when the verb is not applied
to any instance (i.e. such as the player referring to an object). In fact, a
global verb cannot include any parameters in their syntax declaration.

A verb declaration inside a class definition or an instance will be
considered if that instance (or an instance inheriting from that class) is
used as a parameter in the input.

The identifiers in the list (‘take’ and ‘get’ in the example above) will be
player words that by default can be used to invoke the verb. But if a
Syntax is declared for the Verb (see Syntax Definitions on page 84), the

92 -

Alan Adventure System - Reference Manual

identifiers in the list will not be accessible to the player, instead the
sequence of words and parameters specified in the Syntax must be used.

If there is more than one identifier in the list, as in the example above, this
can be viewed as a short hand for declaring identical checks and bodies for
all the verbs in the list. This will create synonymous actions for different
verbs on the level where the verb declaration is. They may differ in
implementation at other places, i.e. if they are declared in the same verb
declaration on one level in an inheritance tree, they can still have different
bodies on another level.

Verbs in Locations

A special case is a verb declared in, or inherited by, the location where the
player currently is located. If this verb is used, any checks or body of that
verb will be considered before the verbs in the parameters. An example
might be a location representing walking on a high wire. Anything
dropped at the following location will disappear:

The high_wire Isa location
Verb drop

Does Only
Locate o At limbo. –- Instead of "here".

End Verb.
End The.

Verb Checks

check = unconditional_check
 | check_list
unconditional_check = ‘CHECK’ {statement}
check_list = ‘CHECK’ expression ‘ELSE’ {statement}

{‘AND’ expression ‘ELSE’ {statement}

To determine if the action is possible to carry out, the Checks are
executed. Which checks to run, is determined by the class of the instances
bound by the parameters to the verb. All checks in the inheritance tree are

- 93

Alan Adventure System - Reference Manual

tried by starting at the base class. In this way, the most general checks are
tried first, then more specific.

A typical use of a check is to verify if the parameter has a particular
property:

Verb take
Check obj Is moveable

Else "You can’t take that."
...

End Verb take.

If no expression is specified for a check, that check will always fail, in
effect becoming an unconditional check. This is useful for preventing
certain actions, such as at specific locations, since the checks are always
executed first.

The jumpless Isa Location
Verb jump

Check "You can’t do that here."
End Verb jump.

End The jumpless.

If any check should fail, the execution of the current verb is interrupted and
the statements following the failing check are executed. The user (player) is
then prompted for another command. So in the above example, the verb
“jump” will always result in “You can't do that here.” at the location
“jumpless”.

Note: Checks are intended to take care of any exceptions for executing
the normal case. The normal, or positive/affirmative, case
should be handled by the Does-clause.

With this in mind, Checks are also used when handling the user input all
(see Player Input on page 150 for details on possible player input). The
mechanisms for this involve examining all objects at the current location
and evaluating all checks for the verb. Any objects that do not pass the
checks are not considered for execution. This limits the handling of all to
only executing the verb bodies for objects that are reasonable, i.e. that will
not fail in the Checks.

94 -

Alan Adventure System - Reference Manual

For example assuming the above definition of the verb take and a location
containing the two objects, ball and box, of which only the ball is
takeable the player input

> take all

would result in all representing only the ball. See Player Input on page
150 for an explanation of the player view of this.

Does-clause

does = [qualifier] {statement}
qualifier = ‘BEFORE’
 | ‘AFTER’
 | ‘ONLY’

If all checks succeed, the execution of the verb will be carried out.
Multiple verb bodies may be involved. The order is by default to first
execute the body of any verb declaration for the current location
(including verb bodies inherited by it). Each parameter is then examined to
find any declarations of that verb for the instance (including inherited verb
bodies). These verb bodies are then executed in the order in which the
parameters occurred in the syntax declaration, for each parameter starting
with the body in the most basic class. By default, all of the involved verb
bodies are executed. This is the most natural order and covers most cases.

In some infrequent situations, another order may be necessary. By using
the qualifiers, Before/After/Only, the author can decide which verb
bodies will be executed and in which order (see Verb Qualification below
for details).

A simple verb example:
Verb take

Check obj Not In inventory
Else "You already have that."

- 95

Alan Adventure System - Reference Manual

Does
Locate obj In inventory.

End Verb take.

Verb Alternatives

verb_alternatives = ‘WHEN’ id simple_verb_body

When a Verb is declared within an instance declaration, verb alternatives
are allowed. These alternatives are used in conjunction with the Syntax
declaration defined for the verb and allows differentiating between the
instances occurring in different places in the input.

When a player inputs a command, each parameter in the syntax (see
above) is bound to an actual instance or receives the value of a literal,
depending on the specified syntax. To determine the checks to test and
verb bodies to execute the parameters are examined in turn according to
the algorithm described in the section Verb Qualification below. Each
instance may have different verb bodies executed depending on at which
position it occurred (to which parameter it was bound).

For example, assume the following syntax definition
Syntax break_with = ‘break’ (o) ‘with’ (w).

If used with the delicate_vase actions could differ if it occurs as the
direct object (o), or if it occurs as the indirect object (w). To implement
this the Verb body for break_with should also differ. For each parameter
in the syntax, you may define different actions by supplying a verb
alternative for each parameter identifier. The verb declaration could look
like

The feather Isa object
Verb break_with

When o Does
"The feather is even more flat than before."
Make feather flat.

When w Does

96 -

Alan Adventure System - Reference Manual

"There is not much that you can break with a feather!"
End Verb break_with.

End The feather.

If no alternative is explicitly specified the verb body will be considered for
all positions in the syntax. The compiler will warn for this if the syntax
allowed the class of instance to occur in all the parameter positions.

Verb Qualification

qualifier = ‘BEFORE’
 | ‘AFTER’
 | ‘ONLY’

The order in which the different verb bodies are executed is normally from
the most general to the most specific. But, to allow for local differences,
i.e. special handling of the verb at this location, a any possible definition of
this verb in the current location (included inherited verb bodies) are
considered first. Then, the verb bodies in the parameters (in the order they
appeared in the syntax definition) on which the verb was applied are
examined to find and execute their verb definitions. For each parameter,
its most general definition is executed first, verb bodies down the
inheritance tree next, ending with any verb body declared in the specific
instance bound to that parameter.

In most circumstances, this is the most logical order, but if another order
is required, the verb qualifiers After, Before and Only may be used to
alter this behaviour. The qualifiers alter the order of execution and a strict
definition of this is described below.

Verb Execution

First all parameters are evaluated according to the syntax restrictions (see
Parameter Restrictions on page 88). Then, if they passed, the checks of all
verb declarations are evaluated (see Verb Checks on page 93). Finally the

- 97

Alan Adventure System - Reference Manual

verb bodies are executed in the normal order as explained by the table
below.

Outer
Region

… Current
Location

First
parameter

… Last
parameter

Base class
(entity)

Outermost

:
Leaf class
Instance Innermost

The table above illustrates the normal order of execution of verb bodies
and checks. Starting with any base classes to the outermost region
(containing location), continuing to the actual instance of that location, as
illustrated by the first column. It then continues with any inner regions
(second column) and the current location itself (third column). The
execution then proceeds to the parameters of the syntax in order (columns
four through six), traversing the inheritance tree from the base class to the
instance.

Note: If you add a verb to the class entity, it will be inherited by all
instances, including locations and objects. This will result in the
execution of that verb body multiple times, since it will be in
every column in the table above.

Controlling Execution with Qualifiers
There are cases where you don’t want all the bodies to be executed, or
there is a special need to execute them in a different order. The most
common case is to prohibit other bodies to be executed, e.g. a verb body
in a location might want to stop the player from throwing any object. This
verb body must then ensure that it is the only verb bodies to be executed.
This can be done using the Only qualifier (see Verb Qualification on page
97).

98 -

Alan Adventure System - Reference Manual

Qualifiers control the order of execution of verb bodies. How does this
work?

First, starting at the “innermost” according to the table above, the verb in
the last parameter (if any) is investigated and, if any of its (inherited) verb
bodies have the Before or Only qualifier it is executed. If the qualifier was
Only the execution is also aborted at this stage and no more verb
definitions are examined, otherwise the other parameters are examined in
the same way.

In the next step, the current location is examined and, if it contains (or
inherits) a verb definition with a Before or Only qualifier, that definition
is now executed (and if the qualifier was Only, execution is aborted). Since
locations can be nested, the surrounding locations are then examined in
the same way.

As a result of this behaviour, a Before qualifier in the verb definition in an
object parameter will supersede an Only qualifier in the location.

At this stage, all Before and Only qualifiers are handled appropriately.
This only leaves the definitions without any qualifier or with the After
qualifier. The outermost verb body (as indicated in the table above) is ex
amined and if it did not have the After specification, it is executed (if it
had an Only qualifier execution is stopped after executing it). Any
definition of the verb in the current location is again examined and, if it
did not have the After qualifier, it is executed. What remains is to execute
the verb definition in the parameters if they have not been executed
already, and to execute the location definition if they where declared with
the After qualifier.

So in short (with base class definitions of the outermost location being the
outermost and the instance bound to the last syntax parameter the
innermost):

• From the outside in, find any Before or Only definitions and
execute them (stop if Only found).

- 99

Alan Adventure System - Reference Manual

• From the inside out, execute any definitions not already executed
and not declared with the After qualifier.

• Execute the remaining verb definitions (those with an After
qualifier) from the outside in.

The second item in the above list is equivalent to the normal order of
execution.

The qualifiers are a powerful but confusing concept. The normal order of
execution is usually appropriate and only in special cases should qualifiers
be used. When they are needed, you will find that one qualifier at the
correct definition will normally do the trick. The above algorithm is used
to get a strict definition of the execution order. It is not expected that all
this complex behaviour will be needed in practice.

Note: All checks for a Verb will always be run in the normal order
regardless of any Before/After/Only qualifiers.

An example of the use of qualifiers is to ensure that only the verb body
within the object is executed:

The bomb Isa object
Verb take

Does Only
"Your curious fingering at the intricate

mechanism sets it of. BOOOM!"
Quit.

End Verb examine.
End The bomb.

This also illustrates the fact that the most commonly used qualifier is the
Only qualifier since it is used whenever all other behaviour is replaced by
some special behaviour.

3.11 Events

An event is a sequence of statements executed at a specified time (count of
turns). It is also executed at some specific location. An event can e.g. be

100 -

Alan Adventure System - Reference Manual

used to create an explosion where the bomb is three moves from now or
to let the ceiling of the cave fall down in five moves.

Event nearby_explosion
"Somewhere in the distance there is an explosion."
Make bomb gone_off.
Schedule small_avalanche After 2.

End Event.

The body of an event can be any sequence of statements. They can
however not refer to any parameters, since no verb is executing, or the
Current Actor. See Run-time Contexts on page 152.

Events may be scheduled and cancelled with the Schedule and Cancel
statements (see Event Statements on page 116).

3.12 Rules

rule = ‘WHEN’ expression (‘THEN’ | '=>')
 {statement}

 [‘END’ ‘WHEN’ ‘.’]

A rule is an arbitrary expression, which, when true, results in the execution
of some given statements. Rules can only be declared on the global level
(not inside classes or instances). The main intended use of rules is to detect
particular situations and then trigger some action. Typically they can be
used to make things happen when certain situations arise, such as starting
an actor when the hero enters the cave.

Here is an example that investigates if the hero is in the cave and if so,
activates the monster:

When hero At cave And monster Not active Then
Use Script hunting For monster.

End When.

The expression that is tested may of course have any level of complexity:
When hero At cave

- 101

Alan Adventure System - Reference Manual

 And (monster Is hungry Or monster Is angry)
 And sword Not In hero
=>

Use Script eat_hero For monster.
End When.

Each actor action and event execution is considered atomic (it can't be
divided into smaller parts). All rule conditionals are evaluated after each
actor (including the player) has acted (script step and player command
respectively) and after each event has executed. In effect this will mean
that a change in state will be detected almost immediately, if there is a rule
for detecting that change.

The statements within the rule are triggered when the condition becomes
true. In the first example, this means that if the monster is not active, the
statements will be executed when the hero enters the cave ('hero At cave'
becomes true). A rule body can never be executed twice in succession
unless the conditional has been evaluated to false in between. In the
example above, the triggering of the hunting script for the monster will
not happen again unless either the hero has left the cave and entered it
again, or the monster has been active and then become not active again.

The use of parameters, Current Actor, Current Location, Here and
Nearby is not allowed in rules conditionals or bodies.

Rules are executed at no location. Therefore it is not possible to
communicate directly with the player in the rule with output statements
(since the hero cannot be where the rule is executing, see Output
Statements on page 108). Triggering an event that handles the output
intended for the player, is the recommended solution to this.

The following is a complete game using a rule:
The kitchen Isa location
 Exit x To kitchen.
End The kitchen.

When Count Isa actor, At kitchen = 1
 Then Schedule whee At actor After 0.
End When.

Event whee

102 -

Alan Adventure System - Reference Manual

 "Whee!"
End Event.

Start At kitchen.

In this example the rule conditional (the text marked with grey) is using an
aggregation (“count”, see Aggregates on page 139) over two filters (see
section 3.21 Filters on page 140) that will count the number of actors at
the kitchen, and when that number becomes one, the rule will trigger and
execute the statements, in this case scheduling an event that handles the
presentation of the output to the player.

Again, remember that rules are checked after each actor has moved. What
happens if there are more actors in play and they move in and out of the
kitchen, is left as an exercise to the reader.

3.13 Synonyms

synonyms = ‘SYNONYMS’ {synonym_declaration}
synonym_declaration = word {‘,’ word} ‘=’ word ‘.’

A synonym declaration declare words that, when used in player input, are
always interchangeable. For example

Synonyms
‘i’, ‘invent’ = ‘inventory’.
‘q’ = ‘quit’.

The word on the right hand side of the equal sign must be a word defined
elsewhere in the adventure source, such as (part of) an instance name (a
noun or adjective), a direction or a verb. The list of words on the left-hand
side contains new words (not defined elsewhere) that always will be
interpreted as being replaced by the word on the right in the player input.

Synonyms are player words that can be interchanged. Defining synonyms
for verb names will not always give you the result that you expect. The
following example is incorrect.

- 103

Alan Adventure System - Reference Manual

Synonyms
‘examine’ = look_at.

Syntax
look_at = ‘look’ ‘at’ (obj).

Verb look_at ...

This will result in an error message indicating that the synonym word
look_at is not defined. This is because the Syntax (see section 3.8)
defined the verb look_at to have the specified syntax (including the play
er words ‘look’ and ‘at’), the player word look_at is not defined, which is
as well as the player would not be able to input a word with an underscore
(see Player Input on page 150).

You can achieve the desired effect by instead giving multiple verb
identifiers in the verb declarations; this will give the same verb bodies
(checks and actions) to multiple verbs. See the section on Verbs on page
92 for details on verb declarations.

It is also possible to define multiple names for an instance to achieve other
effects similar to synonyms. See Names on page 59 for a description of
this.

3.14 Messages

The Alan system has a number of standard messages built in. These
messages are presented to the player in various situations, both normal and
otherwise. An example is the following:

> go north
You can’t go that way.

The response "You can’t go that way." is a typical example of such system
messages (for details see Appendix C.1, Input Response Messages).

To make the user dialogue more adapted to the settings you select, Alan
allows you to define your own version of these messages. The grammar
for this is

104 -

Alan Adventure System - Reference Manual

messages = ‘MESSAGE’ {message}
message = id ‘:’ {statement}

An example would be:
Message

NOWAY: "There is no exit in that direction."

If the above where used in the source for the same game as the previous
example, it would instead look like:

> go north
There is no exit in that direction.

The Message constructs allows general statements following the message
identifier:

Message NOWAY:
If Random 1 To 2 = 1 Then

"There is no way in that direction."
Else

"You can’t go there."
End If.

The standard message for Noway is replaced by the output from the state
ments in the definition. For a complete list of all the identifiers of
messages and their use, see Appendix R on page 199.

Message parameters
Message sections must be declared at the global level, but to make it
possible to create high-quality messages the message sections have
parameters available. Which parameters are available vary depending on
the message, the details for each message is available in Appendix Input
Response Messages on page 200.

The parameters can be used in the same way as in verb bodies. The names
of the parameters are “parameter1”, “parameter2”, etc. The type of the
parameters will also vary.

- 105

Alan Adventure System - Reference Manual

For some messages, a parameter is an instance. In these cases, the instance
is always of the pre-defined entity class. Any attribute available for this
class will be available in message sections with instance parameters.

Note: If the message must be modified according to the case of the
noun, which is the case with adjectives and negative forms in
many languages, an attribute available on all instances can be
used to select the correct form.

3.15 Prompt Section

The Prompt section allows you to customize the way players are prompted
for their input.

prompt = ‘PROMPT’ {statement}

The default prompt for player input, which will be used if no Prompt
section is declared, looks like

>

Using the following Prompt section it can be set to something else:
Prompt “What now?”

Then the player will of course see

What now?

In fact, the Prompt section allows any statements, not just strings. So you
can have the prompt change during the game.

Prompt
 "Hello" Say hero. "!$n"
 "Where do you want to go from"
 Say Current Location. "?"

This will give the following output:

106 -

Alan Adventure System - Reference Manual

Pirates Bay Harbor
You can see the town of Pirates Bay to the north, and your ship
is at the docks, to the south.
Hello Jack Sparrow!
Where do you want to go from Pirates Bay Harbor?

3.16 Start Section

The start section defines where the player (the hero) will be at the start of
the game. This must be a location. Optionally this may be followed by
statements to be executed at the beginning of the game, such as hello-
messages or short instructions as well as starting any actors and scheduling
events.

start_section = ‘START’ where ‘.’ {statement}

An example would be
Start At outside_house.

Schedule bird_chirp After 5.

Only the ‘At What’ form of the Where construct (see WHERE
Specifications on page 128) is allowed in the Start section. Any
statements are allowed in the start section but they cannot refer to any
parameters.

The start section must be the last declaration in an Alan source.

- 107

Alan Adventure System - Reference Manual

3.17 Statements

Output Statements

There are various ways to present output to the player, string output,
descriptions, printing expressions, listing container content and showing
pictures.

The interpreter intersperses your output with spaces whenever needed.
This might for example occur between two output strings:

“There is a door into the kitchen.”
If kitchenDoor Is open Then
 “It is open.”
End If.

If handled simple-mindedly the two texts would be adjoined and you as an
author would need to cater for this. Instead Alan realizes that a space is
required between them. This space is automatically inserted by the
interpreter during game play. This is also the case if the output from a Say
statement is followed by an output string.

“Your wristwatch shows” Say hours Of watch.
“. Time to go.”

However, as in this example, this is not always the intended output.
Particularly, if the Say statement terminated the previous sentence, as in
the example, we want the full stop to be placed immediately after the
output. So, the Alan interpreter will leave out the space between two
outputs if the second starts with a period (full stop) followed by a space, or
is the single character in the string. This special handling also applies to
strings starting with a comma.

Whenever an output statement is executed, the result will be printed on
the players terminal with the following important exception: if an output
statement is executed at a location in the game where the hero not
presently is, the output will not be shown. This important feature will

108 -

Alan Adventure System - Reference Manual

relieve the author from the burden of constantly considering what the
player will see. It can be used in the following way:

"Charlie Chaplin leaves the house through the front door."
Locate charlie_chaplin At outside_house.
"Charlie Chaplin comes out from the nearest house."

If the hero is inside the house or out in the street, he will get different
views of the situation. This feature ensures that the player only sees what is
going on at the current location, and allows for easy adaptation to various
viewpoints on the events without the need for any special tests. But see
section 6.4 Distant Events on page 162 for a solution in the case the hero
need to be informed about things happening where he isn't.

String Statement

output_statement = STRING

The simplest case of output is just a string, i.e. any text, possibly stretching
over multiple lines, surrounded by double quotes. See also section 4.4
Strings on page 146 for some detailed descriptions on the definition of
strings.

Some character combinations have special meaning for the printout:
$p New paragraph (usually one empty line)
$n New line
$i Indent on a new line
$t Insert a tabulation
$$ Do not insert a space
$a The name of the actor that is executing
$l The name of the current location
$v The verb the player used (the first word)
$ Print a dollar sign

The following can be used to refer to parameters while executing a verb,
but the Say statement (see below) is safer and preferred whenever
possible:

$<n> The parameter <n> (<n> is a digit > 0, e.g. “$1”)
$+<n> Definite form of parameter <n>

- 109

Alan Adventure System - Reference Manual

$0<n> Indefinite form of parameter <n>
$-<n> Negative form of parameter <n>
$!<n> Pronoun for the parameter <n>
$o The current object (first parameter)

Note: The $<n> formats must be used with care as they are not
checked at compile time, e.g. you can use "$+1" in a context
where no parameter is defined which would lead to a run-time
error. To avoid the risk of any run-time problems use the Say
statement with the parameter name wherever possible. See
section Say Statement below.

Note: The use of $o is deprecated. The <n> variants are better, but
the recommended use is to refer to the parameters using their
parameter names in a Say statement instead. This will ensure
full reference analysis by the compiler protecting against any
runtime error.

Style Statement

style_statement = ‘STYLE’ style ‘.’
style = ‘NORMAL’
 | ‘EMPHASIZED’
 | ‘PREFORMATTED’
 | ‘ALERT’
 | ‘QUOTE’

The style of the text output can be controlled using the Style statement.
With the exception of the Emphasized style, the styles are intended to be
applied to whole paragraphs. The style indicated in the statement applies
until another Style statement is executed.

Note: The exact visual appearance of the styles is implementation
dependent. In fact, there is no guarantee that the styles will
actually differ.

110 -

Alan Adventure System - Reference Manual

Describe Statement

output_statement = ‘DESCRIBE’ what ‘.’

The Describe statement executes the description part for an instance,
such as an actor, an object or a location. If no such description exists a
default description, such as

"There is a coin here."

is used instead. In this case, if the instance has the container property, a
List statement is also executed for that object automatically (see below).

If a Describe statement is executed for another instance during the
execution of the description clause, the system will recognise this and
make sure that the second instance is not described more than once. This
makes it possible to use instances as parts of a location and embedding
their description at the correct place in the longer description of the
location.

"This office is dusty and probably hasn’t been used for
many years."

DESCRIBE desk.
"To the west is an open door, and to the east you can see the

staircase.”

Say Statement

output_statement = ‘SAY’ [form] expression ‘.’
form = ‘THE’ | ‘AN’ | ‘IT’ | ‘NO’

The Say statement will output a short description of what is referred to by
the expression. If it refers to an instance, it will print the name of it or
execute its Mentioned clause if one is available. If it refers to an attribute,
it will print its value, such as an integer or a string. Parameter names are
also allowed in the Say statement, which, of course will result in a short
description of the instance to which it is bound, or a printing of the literal
(if the parameter was a String or Integer parameter).

- 111

Alan Adventure System - Reference Manual

If contents Of bottle > 0 Then
"In the bottle there are still"
Say contents OF bottle.
"litres of water left."

Else
"The bottle is empty."

End If.

If the what part refers to an instance, the optional form may be used to
control in which form the instance will be output.

If ‘THE’ is used the form used will be the definite form, usually the short
form preceded by a definite article. Correspondingly, the use of ‘AN’
indicates an indefinite form. A third form, using ‘NO’, is available. It
indicates that the negative form as defined by the negative article or form
should be output. Refer to Articles and Forms on page 71 for a description
of the definite/indefinite articles and forms. Finally, the ‘IT’ form will
print the pronoun associated with the instance.

List Statement

output_statement = ‘LIST’ expression ‘.’

The List statement lists all objects in a container together with the header
as specified for the container. If the container is empty, the statements in
the empty clause of the container are executed instead.

"The chest is heavy."
If chest Is open Then

List chest.
End If.

Of course, the instance being listed must be an instance that has the
container property, which may be inherited. This instance can be referred
to by being bound to a parameter or a reference attribute for example.

112 -

Alan Adventure System - Reference Manual

Multi-media Statements

Alan has some multimedia provisions, although they may not be available
on every platform and implementation. The Show statement, presents an
image in the output window, and the Play statement plays a sound.

The Alan compiler will always support the multi-media statements, but a
particular interpreter might not do so. Most GLK-based interpreters will
support it but others might also. The game will still play fine, but the
multi-media resources will silently be ignored. There is also no way to
check for this in your source code. So, don’t rely on them for your story,
particularly do not give the player necessary information only through
pictures.

Image and sound files are analyzed by the compiler and copied into an
Alan v3 resource file (file extension .a3r) that must be distributed with
your game file, otherwise they will not be available during game play. The
original file will be left untouched.

The format of the resource file follows the standard Interactive Fiction
resource file format “blorb” and supports images of JPEG and PNG
types, and sounds of MOD and AIFF formats.

If a resource file is referenced from multiple statements, it will only be
copied once. The Alan compiler uses the file extension to determine the
media type of the file. The following extensions are recognized: .jpg,
.jpeg, .png, .mod, .aif and .aiff.

Show Statement

output_statement = ‘SHOW’ id ‘.’

- 113

Alan Adventure System - Reference Manual

The id should be the name of an image file. Since filenames may contain
various special characters, a quoted identifier (see File on page 146) is
usually required.

Alan currently supports the PNG and JPEG formats only.

Play Statement

output_statement = ‘PLAY’ id ‘.’

The id should be the name of a sound file. Since filenames may contain
various special characters, a quoted identifier (see File on page 146) is
usually required.

Alan currently supports the MOD and AIFF formats only.

Manipulation Statements

Locate Statement

locate_statement = ‘LOCATE’ what where ‘.’

The Locate statement is a way of transferring instances to new locations.
When executed, the indicated instance will be placed at the location given.
For a description on how to specify where, see WHERE Specifications on
page 128. When an actor is located at a new location the DOES clause of
that location is always executed.

One special case of the Locate statement is when the predefined actor
hero is located somewhere. This is analogous to the player typing a
direction, i.e. the hero will be located at the appropriate location. Under
particular circumstances, you may want to locate the player at a different
location as a side effect of another action. For example:

114 -

Alan Adventure System - Reference Manual

Event explosion
"Suddenly the door seems to bulge outwards, it bursts

open throwing rocks and splinters everywhere. The
impact of the explosion literally throws you back
out in the hallway."
Locate hero At hallway.

End Event explosion.

In this case, the new location will be described and the Does clause of that
location executed.

Another special case is when locating something inside a container. The
Locate statement will then cause the execution of the limits of that
container, and if any of the limits are exceeded the complete player turn is
aborted immediately, resulting in no more statements being executed. So,
if a player command should result in the location of an object inside a
container, a good thing is to place the Locate statement as early as
possible, as this enforces the limit checks in the beginning of this player
turn.

A very special third case is locating a location at another location.
Locations can in this way be nested, resulting in an outer location working
as a region or surrounding for the inner location. The effect of this is that
any instances present in the outer location are reachable from the inner.

Empty Statement

empty_statement = ‘EMPTY’ what [where] ‘.’

The Empty statement locates all instances currently located inside the
given container (instance with the Container property) at a certain
location. The meaning of the where part, is the same as in the Locate
statement. If it is not specified the instances will be placed at the current
location.

Empty inventory Here.
"You seem to have lost most of your possessions. Well,

you can’t have everything."
Locate hero At restart_point.

- 115

Alan Adventure System - Reference Manual

Strip Statement

strip_statement = ‘STRIP’ [direction] [count] [size]
 from_clause [into_clause] ‘.’
direction = ‘FIRST’ | ‘LAST’
count = expression
size = ‘WORDS’ | ‘CHARACTERS’
from_clause = ‘FROM’ expression
into_clause = ‘INTO’ expression

The Strip statement is used to manipulate the contents of strings content.
You can use it to remove words or characters from a string, starting from
the beginning or the end. The words or characters that are removed may
be placed in an attribute as specified by the optional into clause. If the
statement is used to manipulate words, blanks and separators are used to
separate the words. In this case, any resulting string is also free of leading
and trailing blanks.

A short example
The eliza Isa actor

Has topic "".
Verb talk_to

Does
Set topic Of eliza To “sailing music cooking reading”.
Strip Random 0 To 2 Words From topic Of eliza.
Strip First Word From topic Into topic.
“And how do you feel about” Say topic Of eliza. "?"

End Verb.
End The eliza.

Event Statements

Schedule Statement
Schedule will queue an event to occur at a specified location after the
number of player turns specified by the expression.

event_statement = ‘SCHEDULE’ what [where]
‘AFTER’ expression ‘.’

116 -

Alan Adventure System - Reference Manual

For example
Schedule ringing At clock After 60 - minutes Of clock.

The number of moves can be zero, i.e. After 0 means that the event will
occur now (during this player turn, probably last, though). If no location is
specified, Here is assumed, i.e. it will be executed at the current location,
the location where the statement itself was executed.

An important case is when a Schedule statement without a where-clause
is executed inside a Rule. Since rules are executed at nowhere so will the
event. This means that any printout will be done nowhere and thus will be
invisible to the player.

If the where-expression has the form At id, and the identifier represents
an instance not inheriting from location, the event will occur wherever
that instance is when the event occurs. The event will ‘follow’ the instance.

Executing a second Schedule statement for the same event before it has
occurred will reschedule the event to the new time. An event can only be
scheduled for one execution at a time.

Note: The event can be specified by giving an event identifier or
referring to an attribute of Event type.

Cancel Statement

cancel_statement = ‘CANCEL’ what ‘.’

Cancel will remove the event referenced from the queue of scheduled
events. It is not an error to remove an Event, which is not currently
scheduled.

Event ticking
"Tick..."
If timer Of bomb = 0 Then

Schedule explosion After 1.
Else

Decrease timer Of bomb.

- 117

Alan Adventure System - Reference Manual

Schedule ticking After 1.
End If.

End Event ticking.

Verb defuse
Does

Cancel ticking.
Cancel explosion.
"Phuuui! That was close."

End Verb defuse.

Start At office.
"The bomb is ticking..."
Schedule ticking After 1.

The event can be referenced using any expression of Event type, e.g. an
attribute.

Assignment Statements

There are a number of statements for changing values of attributes.

Make Statement

make_statement = ‘MAKE’ what something ‘.’
something = [‘NOT’] id

The Make statement is used to set or reset Boolean attributes.
Make door open.
Make door Not open.

Increase and Decrease Statements

increase_statement = ‘INCREASE’ what [by] ‘.’
decrease_statement = ‘DECREASE’ what [by] ‘.’
by = ‘BY’ expression

The Increase and Decrease statements modifies the values of numeric
attributes by increasing or decreasing them by the value of the expression

118 -

Alan Adventure System - Reference Manual

given in the optional By clause. If no By clause is specified the attributes
are changed by one.

Increase level Of bottle By contents Of mug.
Decrease lives Of hero.

Set Statement

set_statement = ‘SET’ what ‘TO’ expression ‘.’

The Set statement is used when assigning values to numeric, string,
reference of set valued attributes.

Set mood Of king_tut To 3.
Set hour Of clock To hour Of clock + 1.

Setting attributes of reference or set type requires that the expression
follow the type and subclass compatibility rules. For example, you can only
assign

• integer type expressions to an integer attribute
Set intAttr To 4. -- Correct if intAttr is of Integer type
Set intAttr To “hi”. -- Incorrect

• an expression that refers to an instance if the attribute being
assigned to is a reference attribute which has a class of which the
class of the expression is a subclass

Has suspect butler.
Set suspect Of detective To someLocation. -- Incorrect

• a set valued expression to a set type attribute if all members are
instances of some subclass of the member class of the target
attribute. Here are some examples, given the natural types of the
instances

Has friends {monica, ross, chandler, rachel, phoebe, joey}.--
persons
Set friends Of mine To {book}. -- Incorrect, probably not a person
Set friends Of mine To {}. -- Correct, empty set is always OK
Set friends Of mine To {suspect Of detective}. -- Correct maybe

- 119

Alan Adventure System - Reference Manual

Include Statement

include_statement = ‘INCLUDE’ expression ‘IN’ set ‘.’

The Include statement is used to include a new member in a Set.
Typically, this is used to an instance or value to a collection of such. See
section Set Type on page 46 for an explanation of the Set type. A member
already in the Set will silently be accepted but not generate duplicate
entries.

The set may be identified using an expression involving reference
attributes:

Include hitchhiker In friends Of driver Of car.

And vice versa:
Include driver Of car In friends Of hitchhiker.

Exclude Statement

exclude_statement = ‘EXCLUDE’ expression ‘FROM’ set ‘.’

The Exclude statement is the reverse of the Include statement. It
removes a member from a Set. An attempt to remove something not
included in the Set will be silently ignored, so that after the execution of
the statement it is guaranteed that the member is not in the Set.

Note: The inclusion or exclusion of an instance will not affect its
location. A member may be included in multiple Sets.

Conditional Statements

In Alan there are two conditional statements, the common If statement
and the Depending On statement.

120 -

Alan Adventure System - Reference Manual

If Statement

if statement = ‘IF’ expression ‘THEN’ statements
{ elsif_part }
[else_part]

 ‘END’ ‘IF’ ‘.’
elsif_part = ‘ELSIF’ expression ‘THEN’ statements
else_part = ‘ELSE’ expression ‘THEN’ statements

The If statement is essential for varying output and otherwise change the
activities in the game. The expression is evaluated (see Expressions on
page 131 for details and examples of expression) and if it evaluates to true,
the statements following the Then are executed. Otherwise, the expres
sions in any following Elsif clauses are evaluated (in order) and the state
ments following the first expression that results in a true value is executed.
If none of the expressions in the Elsif clauses evaluated to true, or there
are no Elsif clauses, the statements following the Else are executed. The
Else clause is optional.

If minute Of clock = 59 Then
Set minute Of clock To 0.
Increase hour Of clock.

Else
Increase minute OF clock.

End If.
If level Of bottle = 0 Then

"You have no water."
Elsif level Of bottle < 5 Then

"You have almost no water left."
Else

"You have plenty of water."
End If.

If statements which have an Isa-expression (see Class Expressions on
page 135) are particularly important. As an Isa-expression test for the
class of an instance, an If statement like

If i Isa actor Then ...

will quarantee that for any statement inside the Then-part of that
statement, the i will be of the class actor. This means that references to

- 121

Alan Adventure System - Reference Manual

attributes, container properties and actor scripts etc. as if i belongs to the
class actor, even if that was not known outside of the If-statement.

A typical example where this is helpful is inside verbs where parameters
can be restricted to more general classes by the syntax and the actual
action can still perform specific actions only allowed on more specialized
classes. Another would be in a loop over some unknown set of instances.

For Each e Isa entity, Here Do
If e Isa actor Then ...
If e Isa object Then ...
If e Isa container_object Then ...

End For.

Depending On Statement

depend_statement = ‘DEPENDING’ ‘ON‘ expression
 {case}
 ‘END’ ‘DEPEND’ ‘.’
case = right_hand_side ‘THEN’ statements
 | 'ELSE' statements

The Depending On statement is a provided to select one of a number of
possible conditional cases depending on an expression. The expression can
be any expression. The right-hand side is the right hand side of any
valid expression. When combined with expression (as the left hand side
of the expression) they will be a complete expression, that is evaluated.

A simple example of the Depending On statement is:
Depending On weight Of obj

= 1 Then "light as a feather"
Between 2 And 10 Then "carryable"
Between 10 And 20 Then "heavy"
> 20 Then "immobile"
Else "weightless"

End Depend.

The meaning of this example is to test the weight Of obj and select one
of the cases depending on the value of it. If it is equal to one the first case
will be executed. If none of the cases match, the optional Else case will be
executed (in this case it will only be executed for weights of zero or less).

122 -

Alan Adventure System - Reference Manual

The cases are tested in the order specified. At most, one case will be
executed. In the example, a weight of ten will render as "carryable".

The tests are thus equivalent to
If weight Of object = 1 Then "light as a feather"
Elsif weight Of object Between 2 And 10 Then "carryable"
Elsif weight Of object Between 10 And 20 Then "heavy"
Elsif weight Of object > 20 Then "immobile"
Else "weightless"
End If.

A Depending On statement is preferable to a chain of If statements when
the same expression will be tested for multiple matches.

Actor Statements

Actor statements are statements that are used to control actors.

Use Statement

use_statement = ‘USE’ script [‘FOR’ actor] ‘.’

The Use statement starts execution of a given script for a given actor. The
For actor clause is optional when writing code within a certain actor; in
this case that the statement applies to the actor that the code is in.

Use Script playing For george.

Note: You can use an expression such as a simple identifier, a
parameter reference or a reference attribute as the actor clause.

Stop Statement

stop_statement = ‘STOP’ actor ‘.’
actor = expression

- 123

Alan Adventure System - Reference Manual

The Stop statement stops an actor from proceeding with any script it may
be executing. In effect, it will abort it and put the actor in an idle state. The
most common case is the direct reference to an actor using its identifier.
More complex expressions resulting in an actor type value, such as a
parameter reference or a reference attribute, can be used as the actor
clause.

Repetition Statements

The Alan language provides one compound statement for repetition, the
For Each statement.

repetition_statement = ‘FOR’ ‘EACH’ id [filters] ‘DO’
 statements
 ‘END’ ‘FOR’ ‘EACH’ ‘.’
filters = filter { ‘,’ filter }
 | ‘BETWEEN’ expression ‘AND’ expression

You can optionally leave out either For or Each but not both.

The identifier is called the loop variable and will have similar semantics as
a syntax parameter. It will dynamically be bound to instances, one for each
repetition. In the body of the loop, the statements, this variable can be
referenced in the same way as a syntax parameter.

The optional filters can be used to restrict the values in the loop. If the
Between form is used, the loop becomes an integer loop, resulting in the
loop variable having integer type and range from the two expressions
inclusive. Otherwise, the loop variable will be of instance type and will
consecutively assume the value of each instance fulfilling the filters. See
Filters on page 140 for an explanation of filters.

Any references to the loop variable within the repetition will refer to the
instance bound, or integer value, in this repetition.

You can use any statements inside the repetition, e.g. to check for further
conditions before operating on the instance. For example

124 -

Alan Adventure System - Reference Manual

For Each creature Isa actor Do
If creature Here Then

…
End If.

End For.

Special Statements

Quit Statement
Quit prints a question giving the player the choice of restarting the game,
reloading a previously saved game or to quit. Any scoring or other
printouts have to be made explicitly before executing the Quit statement.

Look Statement
Look describes the current location (the current location is dependent on
in which context it is executed) and what it contains to the player. First the
location name is output, then the Description part for the location is
executed. If you do not want the name of the location to be included you
can use a Describe statement instead.

Then all object and actors at the location will automatically be executed by
means of an implicit Describe for each of them. Any objects or actors
that were explicitly described using a Describe statements, will be
excluded from this automatic Describe.

The equivalent of a Look is automatically performed when the hero enters
a new location.

Note: As the player will only see output generated at the same
location as the hero, a Look executed by another actor at some
other location will not be seen by the player. See Output
Statements on page 108 for more details on this important
consideration.

- 125

Alan Adventure System - Reference Manual

Save and Restore Statements
Save saves the game on a file for later use with Restore. Both save and
restore asks the player for a file name to use for storing and restoring.
This allows the player to use unlimited number of save files.

If the player should be shown the current surroundings after a Restore,
you will have to implement a player verb like

Verb restore
Does

Restore.
Look.

End Verb restore.

Score Statement
Score is a way of rewarding the player by giving points for certain actions.
This is done using the statement

score_statement = ‘SCORE’ integer ‘.’

For example
Score 25.

The first time every such statement is executed the points given are added
to the player’s current score. Score without any arguments prints a
message indicating the current accumulated score.

Note: The Score statements assume a simple model of scoring; a
number of actions are necessary to complete the game and all
those are necessary to achieve the maximum number of points.
Negative scores are not allowed and once a score is awarded it
cannot be revoked, neither will it be awarded twice. For
adventures having a more complex and varied scoring system
(particularly if the game can be successfully finished without
performing all scoring actions or in multiple ways), manual

126 -

Alan Adventure System - Reference Manual

scoring should instead be implemented using attributes (e.g. on
the hero) and suitable manipulation and test statements.

Visits Statement
The Visits statement changes the number of times a location can be
visited before the long description is presented again:

visits_statement = ‘VISITS’ count ‘.’

The value of the argument (count, which must be an integer number)
controls the number of visits to a particular location between full
descriptions. The initial setting of 0 (zero) indicates that every time a
particular location is visited its full description will be shown (which can
also be expressed as: the full description will not be shown 0 times in
between). Thus, a setting of 1 (one) would give a full description every sec
ond time the same location is visited. So

Visits 0.

will always show full descriptions (which is also the initial setting).

Note: The classic and familiar commands verbose, brief etc. can be
imitated using different values in the Visits statement.

Transcript Statement

transcript_statement = 'TRANSCRIPT' ('ON' | 'OFF') '.'

Using the Transcript statement you can turn transcripting on or off.
When transcripting is turned on all player input and game output is
recorded in a file (or similar) which can be studied afterwards. Example
uses are

• reading the game output as a novel (player)

- 127

Alan Adventure System - Reference Manual

• comparing the output to output from previous versions of the game
(author)

• comparing output to the output of a v2 game (porting from v2)

To enable player access to the transcripting function you need to
implement global verbs:

Syntax script_on = 'script' 'on'.
Verb script_on
 Does
 Transcript On.
 "Transcript turned on."
End Verb.
Syntax script_off = 'script' 'off'.
Verb script_off
 Does
 Transcript Off.
 "Transcript turned off."
End Verb.

3.18 WHERE Specifications

Many constructs in the Alan language require a specification of where the
construct should operate. The general intention of such a Where-
specification is to specify a location.

where = ‘HERE’
 | ‘NEARBY’
 | ‘NEAR’ what
 | ‘AT’ what
 | ‘IN’ what

The meaning of the different constructs is as follows

• Here is the location where the current activity is performed. Often
this means where the hero is, but if the expression is evaluated in
another run-time context this context is used. See Run-time
Contexts on page 152 for a detailed discussion, but examples include
an event scheduled at a particular location, in which case that

128 -

Alan Adventure System - Reference Manual

location is Here. Note that Here is equivalent to At Current
Location.

• Nearby means at any adjacent location. An adjacent location means
that there exists an exit from the other location to Here (note that
the direction is from Nearby to Here). It is allowed to refer to any
instance using an identifier or expression. In particular, instances
inheriting from location are allowed, which can be used to see if a
location is nearby.

• Near what has a similar meaning to Nearby except that it refers to
some other instance (the what) and results in a true value if that
other instance is at a location which is nearby (has an exit to) that of
the location of the first instance. At what means at the location of
the instance referenced by the what specification (see WHAT
Specifications on page 130). Note that an instance is always At itself,
i.e. x At x is always true. This can come in as a surprise, especially
if you try to aggregate or loop over instances. See Aggregates on
page 139 and Repetition Statements on page 124.

• In what must refer to a container and the expression refers to
inside of that container.

These forms can be used in Locate statements and in some expressions
for example. When used in their basic form in expressions they all look
inside containers (and container in containers) to evaluate the expression.
See The Whereabouts of an Entity on page 138 for more information
about Where expressions.

Note: Not all kinds of Where specifications are meaningful in all
constructs requiring one. An example is Nearby. It cannot be
used in a Locate statement, as it requires a specific location to
locate to, and Nearby is not specific.

- 129

Alan Adventure System - Reference Manual

3.19 WHAT Specifications

Constructs in the grammar for the Alan language often refer to some class
or instance defined in the Alan source. This is generally called a what
specification, as it specifies what the construct refers to. An example is the
Locate statement that must refer to something that should be relocated.

what = ‘CURRENT’ ‘ACTOR’
 | ‘CURRENT’ ‘LOCATION’
 | ‘THIS’
 | id
 | attribute_reference

The meaning of the different forms of the what specification are:

• Current Actor is always set to the actor currently active, e.g. when
a non-player actor is running a script this refers to the actor instance
that is running.

• Current Location is the current location, i.e. the location where
the current activity is performed. Normally this is the location where
the hero is, but may also be where an event is executed or the
location where a scripted actor currently is executing. See Run-time
Contexts on page 152 for more details.

• This refers to the instance in which code, such as a verb body or a
script, is run. This can for example be used to test or set attributes in
inherited code, thus testing or setting attributes in the instance while
the code is defined in a class that the instance inherits from. It
cannot be used in events or global verbs.

• An identifier, id, refers to the class or instance with that name, a
syntax parameter, script or loop variable with that name. A syntax
parameter may have the same name as an class or instance declared
elsewhere in the source in which case the parameter has precedence.

130 -

Alan Adventure System - Reference Manual

• A reference to an attribute, as described in section Attribute
References on page 132, might be used depending on its type and
the context of the usage of the what-expression.

Note: Not all kinds of What specifications are meaningful in all
contexts. For example it is not possible to use Current
Location (nor an identifier referring to an instance inheriting
from location) as the what-part of a Locate In statement.
(Since it is illogical to locate locations in containers.)

3.20 Expressions

The grammar for Alan refers to expression. This is a generic name for a
number of constructs yielding a value. The following sections describe the
different kinds of expressions available in the Alan language.

Types of Expressions

Expressions are used e.g. in If and Set statements. The If statement re
quires a Boolean expression, i.e. an expression yielding a true or false
value, while the Set statement can handle all other types of values. See
section Types on page 45 for details on types.

Literal Values

A single integer (e.g. 42) is a numeric expression. A string is an expression
and represents a string value, e.g.

Set password Of terminal To "xyzzy".

A value of the set type can be constructed directly as an expression. This
can be used in a Set statement or another expression. E.g.

Set suspectedWeapons Of detective To {gun, bat, axe}.

- 131

Alan Adventure System - Reference Manual

Each member in the set expression can be an expression of integer or
reference type in itself.

Attribute References

attribute_reference = id ‘OF’ expression
 | expression ‘:’ id

A references to an attribute can be used as part of any expression provided
its type matches the semantics of the context. The type of the expression is
the type of the attribute.

There are two formats available, of which the first resembles plain English.
Set password Of terminal To password Of manual.

The second format is more compact, which might be preferable when
referring to chains of attributes referring to other attributes. See Reference
Attributes on page 64 for an explanation on how this works.

Say detective:suspect:weapon.

It might help to read the ':' as a replacement for ´s. In this example the
detective must be known to have a reference attribute, 'suspect', which can
only refer to instances of a class that have an attribute named 'weapon'. It
would be the same as

Say weapon Of suspect Of detective.

You can test Boolean attributes of an instance by following the pattern

expression = expression ‘IS’ something

For example
If bottle Is empty Then …

The test can be reversed by adding a Not:
If hero Is Not hungry Then …

132 -

Alan Adventure System - Reference Manual

Location Of
There is a particularly useful pseudo-attribute, location, that can be used
to query an instance of which location it is currently at.

Make location Of magic_lantern lit.

This attribute is pre-defined on all instances and is guaranteed to return an
instance of the class location, and it will be the innermost location of the
instance (bearing in mind that locations may be nested).

Random Values

There are three types of random expressions. The first is the traditional
random integer expression.

expression = ‘RANDOM’ expression ‘TO’ expression

The random integer expression returns a numeric value that is randomly
selected between and including the values of the two expressions.
Arbitrary expressions yielding an integer value can be used as the boundary
expressions.

Set eyes Of first_die To Random 1 To 6.
Decrease temp Of room By Random 0 To temp Of Room.

The second and third types return a random member in a set or in a
container respectively.

expression = ‘RANDOM’ [‘DIRECTLY’] ‘IN’ expression

If the expression refers to a container, the expression returns one of the
instances currently in that container. The type of the entire expression is
instances of the class accepted by the container. See Container Properties
on page 75 for details on how to determine the class of instances allowed
inside a container.

- 133

Alan Adventure System - Reference Manual

If the expression refers to a set, the result is one of the members in the set.
The type and class of the entire expression is determined by the allowed
members in the set. See Set Type Attributes on page 66.

The optional keyword Directly is only allowed if the expression refers to
a container. The semantics is the same as for the Where expression, see
The Whereabouts of an Entity on page 138.

Note: Attempting to apply a random selection from an empty set or
container is one of the very few situations that could lead to a
runtime error. It is the responsibility of the author to ensure
that this is not attempted. You should always surround a
random member expression with an If statement that ensures
that the set or container is not empty to guard against such
runtime errors. See Aggregates on page 139 for descriptions on
how to count members in a set or container.

Note: A thing or entity inside a container, which normally do not
exhibit themselves, will be candidates for being selected by a
Random In statement, as any other instance.

Logical Expressions

expression = expression (‘AND’ | ‘OR’] expression

The And and Or operators are standard binary Boolean operators, meaning
that the result of an expression is true or false depending on the right and
left expressions, which must also be boolean values or expressions. For
And both expressions need to be true for the expression to be true. If
using Or either of them need to true. Otherwise the expression will be
evaluated to false.

And has higher priority, but parenthesis may be used to change the order
of evaluation.

134 -

Alan Adventure System - Reference Manual

If kalif Here And mood Of sultan Is 0 Then ...
If o Isa treasure And (size Of o > capacity Of c

Or thief Is greedy) Then ...

Class Expressions

expression = something ‘ISA’ class_id

It is possible to check if an instance belongs to, or inherits from, a
particular class. The resulting value is a Boolean type value.

If p Isa object Then …
If opponent Isa enemy Then …

There is a subtle but very important side effect of checking for an instance
class in an If-statement like the above. Doing that will ensure that the
instance or parameter that is checked has all the properties. This holds true
for all statements in the Then-part of the If-statement.

This is used by the compiler to allow references to attributes, scripts,
container properties etc. that otherwise would not be allowed.

A very common use of this is to restrict parameters in a Syntax to a more
general class, like thing or entity, and then doing “manual” restrictions
using If-statements to ensure that usage does not conflict with the actual
properties of the instance. Also see the section on If Statement on page
121.

Binary Operators

All binary operators (plus, minus, multiplication, division) may be used on
integer expressions. The result is another integer expression. The exact set
of available operators is

+, -, *, /

For example

- 135

Alan Adventure System - Reference Manual

age Of golden_child + 4

The plus operator (+) may also be used on strings for concatenation. The
meaning of such an expression is that the two strings are concatenated
into a resulting string. For example

string1 + " " + anotherString

Relational and Equality Operators

Equality (‘=’, meaning equals) and relational operators (‘<’, ‘>’, ‘<=’, ‘>=’,
meaning: less than, greater than, less than or equal, greater than or equal
respectively) are used to compare expressions. The result is true or false
and may be negated by using an optional Not.

If temperature Of oven Not > 100 Then …
If weather Of world Not < protection Of hero Then …

Comparing two string expressions using the binary equality operator ‘=‘
will make a case insensitive comparison, i.e. it will give a true value if the
strings are the same without considering the case of the characters. The
special identity operator, ‘==‘, only works on strings and compares the
strings for an exact match (i.e. considering character case).

Two values of instance type may be compared with the ‘=‘ and ‘<>‘
operators, and may e.g. be used to test if a parameter refers to a particular
instance or is the same as another parameter. For example

Syntax put_in = ’put’ (o) ’in’ (c)
Where c Isa Container

Else "You can’t put anything in the" Say c.
Verb put_in

Check o <> c
Else "That would be a good trick if you could

do it!!"
Does

…

Relational operations are not allowed on entities or strings, nor is it
possible to compare values of different types.

136 -

Alan Adventure System - Reference Manual

A special relational operator is the Between operator which makes it
possible to test if a numeric expression is within a range of values. The
range is inclusive, i.e. the values are included in the accepted range. For
example

If level Of water Between 2 And capacity Of bottle Then …

String Containment

There is a string containment operator, Contains, which can be used to
test if a string contains another string. The test ignores any differences in
character case. An example of an expression that is true is

"A string" Contains "a S"

An optional Not (before Contains) can be used to reverse the test.
"A string" Not Contains "a S"

The expression yields a Boolean value.

Current Entities

There are two particularly interesting entities that you might want to know
something about or which they are. They are

• Current Actor

• Current Location

These two expressions can be used wherever a reference to an instance
can be used. They will refer to the currently executing actor and the
current location respectively. Details about execution contexts can be
found in Run-time Contexts on page 152.

This Instance

You can also refer to the instance that is actually executing the code
containing the expression. This is particularly useful when using

- 137

Alan Adventure System - Reference Manual

inheritance since the class defining the code have no way of knowing
which instance will actually execute it. This expression is This.

An example is the code for objects that can be opened:
Every openable Isa object
 Is Not open.
 Verb open
 Check …
 Does
 Make This open.
 End Verb.
End Every openable.
The door Isa openable
End The door.

> open the door

Given these two declarations and some syntax declarations the door will
inherit the open attribute. When the verb body, also inherited from
openable, is executed, it will set the attribute on the door, because this
instance is running the code.

The Whereabouts of an Entity

expression = what [‘NOT’] [transitivity] where

An expression following the above pattern can be used to test if a
particular instance, as specified by the what, is (or is Not), at the place
indicated by the where, as in

If bottle In inventory Then …

or
If hero Not Nearby Then …

The forms available for the Where expression are described in detail in
WHERE Specifications on page 128.

The default behaviour of a Where expression is to evaluate recursively
through containers, e.g. if the bottle was inside a bag which was in the

138 -

Alan Adventure System - Reference Manual

inventory, the first expression above would still be true. This implicitly
transitive evaluation can also be made explicit through the use of the
keyword Indirectly. This would result in exactly the same semantics,
but it is explicitly expressed, which can be useful.

transitivity =
 | 'DIRECTLY'
 | 'INDIRECTLY'

In addition, another qualifying keyword, Directly, can be used to
indicate that the expression should not evaluate recursively into containers.
To test if an instance is at a particular location but not in a container at
that location you can use:

If key Directly At treasury Then …

The qualifying keyword Directly works in the same way with all Where
expressions. Adding a Directly qualifier to the first example above
would change the expression to only be true if the bottle was in the
container but not inside any other container even if that container was in
the inventory.

Aggregates

aggregate_expression = aggregate filters
aggregate = ‘COUNT’ | ‘SUM’ | ‘MAX’ | ‘MIN’

Aggregates are functions to calculate values from sets of instances. There
are four aggregates available, Count, Sum, Min and Max. Aggregates work
by inspecting all instances available, applying the filters, which may remove
some, or even all, from the set of instances, and then calculate the value
from the remaining instances.

You can use filters to filter out instances belonging to a particular class, at
a particular location or having a particular Boolean attribute. See Filters on
page 140 for an explanation of filters.

- 139

Alan Adventure System - Reference Manual

Count counts the number of instances in the set, e.g.
"You are carrying"
Say Count Isa object, In inventory, Is big.
"big objects."

In this example there are three filters applied, “Isa object”, “In inventory”
and “Is big”. All of these filters must pass before an instance is counted.
The result of that count is an integer, which is then printed using the Say
statement.

The Sum, Min and Max aggregates return the sum, minimum and maximum
value respectively, of an attribute of all instances in the filtered set.

Any attribute referred to either in the aggregation itself or in the filters,
must be an attribute of some class in order to ensure that the attribute is
available for all instances. You must ensure this by filtering out only
instances of the relevant class, e.g. objects, using a class filter.

Some examples:
If Sum Of weight At bridge > 500 Then …
If Max Of size In inventory > size Of small_door Then …
If Count Isa lightsource, Is lit, Here > 0 Then

“Let there be light…”
End If.

These examples could be used to create various restrictions in the possible
travels of the hero.

3.21 Filters

filters = filter { ‘,’ filter }
filter = ‘ISA’ class
 | is attribute
 | where

Filters can be used to filter out only particular instances to loop or
aggregate over. If one of the filters is a Isa <class>, only instances of
that class will be bound to the loop variable or considered in the

140 -

Alan Adventure System - Reference Manual

aggregation. In particular this is required if any of the other filters refer to
attributes, which is only allowed if the class is known and that class is
guaranteed to have that attribute. Other ways to restrict the filtered
instances is to use a Where filter which implicitly restricts to instances
available at or in that location, container or set. See The Whereabouts of
an Entity on page 138 for details on the various forms of the Where
expression.

Multiple filters can be listed separated with a comma. Each filter must
enumerate the set of values to a compatible set, e.g. using two ‘Isa’
filters for actors and locations respectively is not allowed since those two
sets can never be compatible.

- 141

Alan Adventure System - Reference Manual

4 LEXICAL DEFINITIONS

4.1 Comments

Comments may be placed anywhere in the Alan source. A comment starts
with double hyphens (‘--’) and extends to the end of the line.

-- This is a comment

4.2 Words, Identifiers and Names

An identifier is a word in the Alan source, which is used as a reference to a
construct, such as an instance. Identifiers may only be composed of letters,
digits and underscores. The first character must be a letter.

identifier = letter {letter | digit | underscore}

There is also a second kind of identifier, namely the quoted identifier.

id = identifier
 | quoted_identifier
quoted_identifier = quote {any_character} quote

A quoted identifier starts and ends with single quotes and may contain any
character except quotes (including spaces). By quoting any sequence of
characters can become an identifier. A quoted identifier may also be used

- 143

Alan Adventure System - Reference Manual

to make an identifier out of a reserved word such as Look. This is useful in
the definition of the verb look. It would look like:

Verb ‘look’
Does

Look.
End Verb ‘look’.

Quoted identifiers retain their exact content. They may contain spaces and
other special characters, which make them useful as long names for
locations as in

The pluto Isa location Name ‘At the Rim of Pluto Crater’
Description

...

One single-quoted identifier is used as the whole name of the location to
preserve editing and avoiding clashes with the reserved words At and Of.
(This could also have been avoided by quoting just those words.)

Identifiers and words retain their capitalization. An example is
The eiffel_tower Name Eiffel tower …

The first word in the name will always be printed with a capital ‘E’.
However, when comparing the word to player input and other occurrences
of the same word in the source, case will be ignored. This means that you
cannot have two words or identifiers that differ only in case, they will be
the same and stored in the game data as one of the occurrences, which one
is implementation dependent.

Note: Do NOT use a single quoted identifier with spaces or special
characters in them as the name for anything other than
locations, as the words in names are analysed separately and are
assumed to be adjectives and nouns (where it is assumed that
the last is the noun). Except for this you should only quote
single words to avoid clashes with reserved words.

Note: Any one of the occurrences of a word might define its
capitalization, which one is unspecified. This might affect the

144 -

Alan Adventure System - Reference Manual

output if you use capitalization for names of locations, such as
“Name Shore of Great Sea”. Such names can inadvertently
make the game use “Great” for all “great” things in your game.
You can avoid this by using a quoted identifier for the complete
name of the location.

Be careful when using quoted identifiers, especially if the player is
supposed to use the word. A player cannot input words containing spaces
or other special characters or separators. The only exception being
underscores and dashes. A player input word must start with a letter.

Note: To get a single quote within a quoted identifier repeat it
(‘Tom’’s Diner’).

Some of the identifiers in the source for an Alan game are by default used
as player words. This is for example the case with verb names (unless a
Syntax statement has been declared for the Verb) and object names
(unless a Name clause has been used). If these contain special characters,
the player cannot enter them.

4.3 Numbers

Numbers in Alan are only integers and thus may consist only of digits.

number = digit {digit}

- 145

Alan Adventure System - Reference Manual

4.4 Strings

The string is the main lexical component in an Alan source. This is how
you describe the surroundings and events to the player. Strings, therefore,
are easy to enter and consist simply of a pair of double quotes surrounding
any number of characters. The text may include newline characters and
thus may cover multiple lines in the source.

string = double_quote {any_character} double_quote

When processed by the Alan compiler, any multiple spaces, newlines and
tabs will be compressed to one single space as the formatting to fit the
screen is done automatically during execution of the game (except for
embedded formatting information, as specified in Output Statements on
page 108). You may therefore write your strings any way you like; they will
always be neatly formatted on the player’s screen. You can use special
codes (see String Statement on page 109 for a list) to indicate (but not
precisely control) the formatting.

Note: As strings may contain any character, a missing double quote
may lead to many seemingly strange error messages. If the
compiler points to the first word after a double quote and
indicates that it has deleted a lot if IDs (identifiers), this is
probably due to a missing end quote in the previous string.

Note: To get a double quote within strings repeat it ("The sailor said
""Hello!"".").

4.5 Filenames

It is possible to write one adventure using many source files, having
different parts in different files, and thus giving an opportunity for some

146 -

Alan Adventure System - Reference Manual

rudimentary kind of modularisation. The method for this is the import
statement.

import = ‘import’ quoted_identifier ‘.’

The import statement requires a filename, which must be given as a
quoted identifier (see section 4.2).

- 147

Alan Adventure System - Reference Manual

5 RUNNING AN ADVENTURE

5.1 A Turn of Events

The player controls the execution of an Alan adventure. Each of his inputs
are taken care of and acted upon by the run-time system in the interpreter.
The execution of an Alan adventure starts by executing the start section.
The player is then placed in the location indicated in the start section, the
location is described, and the player is prompted for a command.

The player input is analysed according to the explicit and implicit syntax
rules and converted to an execution of verb checks and bodies. Global
verb checks and bodies are used for verbs taking no parameters, otherwise
the verb bodies are found in the parameter instances or their classes. In
case the player typed a directional command the corresponding exit check
and code is executed.

After the players command has been taken care of, all rules are evaluated
and possibly executed. Then each of the other actors executes one step in
their scripts (if active) and for each actor the rules are evaluated again.
Finally, each event that is scheduled for this round is fired, and the rules
evaluated yet again. Finally the player is prompted for another command.

So, to summarise:
get and execute a player command
evaluate all rules
for each actor

- 149

Alan Adventure System - Reference Manual

execute one step (if active)
evaluate all rules as above

end for
for each pending event

execute it
evaluate all rules

end for

A player command may be either a verb or a direction. A verb is executed
by checking the syntax of the input, performing any preconditions
(checks) and then executing the verb bodies (as described in Verbs and
Scope on page 91). A directional command is executed by finding any exit
in that direction, evaluating the checks and the body (if any) of that exit
and locating the hero at the new location.

If the player inputs an empty command, this is equivalent to forfeiting his
turn. The empty command will simply be ignored. The events and other
actors, including turn counting, then proceeds as if the player had input a
proper input, before returning to the player prompt.

5.2 Player Input

The syntax defined in the Alan source is the basis for what the player is al
lowed to input. Commands with the formats expressed in the syntaxes
form the basic statements available to the player. In addition, there are
various combinations and variations are possible using special characters
and words. The words are of course different for different languages, but
in the following generic English words, like “AND-word”, will be used to
denote all words that can be used in the same manner. The exact list of
these words for every language with built-in support is available in
Appendix E.

The following built in syntax variations are available to the player:

• Concatenating of statements using AND-words like

> open the door then enter

150 -

Alan Adventure System - Reference Manual

> take the book and read it
> west. north. east

• The use of pronouns to refer to the last object mentioned in the
previous command, e.g.

> take the book and read it
> give key to guard and ask him to open the door with it

The pronouns have to be defined by the author in his source (see
Pronouns on page 62) or by a library. The only built-in pronoun is the
IT-word, which is automatically defined on the class thing.

• References to multiple objects using AND-word. This allows

> take the blue vase and the pillow
> the red key, the glass bowl and the compass

• Reference to multiple objects using ALL-word

> drop all

• Excluding objects using a BUT-word, like:

> wear everything except the bowler hat

• The use of a THEM–word to refer to the multiple objects referenced
in the previous command, e.g.

> remove the hat and the scarf then drop them

The reference to multiple objects (or actors) in a position is only possible
if the adventure author has allowed it by using a multiple indicator in the
syntax definition (see Syntax Definitions on page 84). All the variations
above are built in and handled automatically by the run-time system.

The interpreter also automatically restricts parameter references to things
reachable according to the semantic rules of each built-in base class (see
Instances on page 50 for the complete details). For example objects are

- 151

Alan Adventure System - Reference Manual

only possible to refer to if they are present at the current location, except if
the syntax for the command uses the omnipotent ‘!’ indicator (see Syntax
Definitions on page 84 for details). For some hints on ways to allow the
player to refer to objects and actors that are not at the current location,
refer to Distant & Imaginary Objects on page 173.

If the player uses ALL instead of a reference to an instance in his
command, the verb will be applied to all appropriate instances at the
current location, except the ones that do not pass all checks for the verb
(see Verbs on page 92 for further details on this).

A restriction placed on the player input by the interpreter is that the words
the player is allowed to use can only contain alphanumeric characters,
underscores and dash. This must be kept in mind when naming verbs that
use the default syntax (an explicit Syntax statement can always specify
other player words to trigger the verb).

5.3 Run-time Contexts

When the player enters a command, the Alan run-time system evaluates
the various constructs from the adventure description (source) as
described above. Depending on the player’s command evaluation of
different parts of the adventure may be triggered. These parts all have
different conditions under which they are evaluated and have different
contexts. Four different execution contexts can be identified:

• Execution of a verb. During the execution of a verb (the syntax and
verb checks and the verb bodies), which is the result of the player
entering a command that was not a directional command, param
eters are defined and may be referenced in the statements and ex
pressions. In addition, the Current Actor is set to the hero and
Current Location to the location where the hero is (Here refers
to the location of the hero).

• Execution of descriptions. These are started as the response to a di
rectional command, a Look or Describe statement, or a Locate

152 -

Alan Adventure System - Reference Manual

statement operating on the hero. During this, no parameters are
defined, Current Actor is set to the hero, and Current
Location of course to the location being described. The description
clauses for objects and locations, as well as the Entered clause of
locations, are evaluated in this context. Entered clauses are
executed for all actors entering a location with Current Actor set
to the moving actor.

• Execution of actors. When an actor performs his script step there
are no parameters defined but Current Actor is set to the actor
currently executing. Current Location is set to that of the
executing actor (Here refers to where the executing actor is).

• Execution of events, no parameters and no actor is defined. The
location is set to where the event was scheduled to execute.

• Execution of rules. Rules are executed without location, so neither
parameters, Current Location or Current Actor is defined. Any
output statement will in this context be completely useless since the
hero can never be at the same location as the execution of the rule.

So, the execution of various parts of the adventure source can also be said
to have a number of different focuses, meaning where the action is
considered to take place:

• The hero - the actions of the player are always focused on the hero
and the actions performed are always related to where the hero is

• An actor - steps executed by an actor are always focused where the
actor is

• An event - code executed in events are focused where the event was
specified to take place

• A rule - rules are executed after each actor (including the hero) and
after each event with the focus set to the complete game world

- 153

Alan Adventure System - Reference Manual

5.4 Moving Actors

The main way to move the hero is through the exits (see Exits on page
81). They are executed if the player inputs a directional command, i.e. a
word defined as the name for an exit in any location. First, the current
location is investigated for an exit in the indicated direction, if there is
none an error message is printed. Otherwise, that exit is examined for
Checks, which are run according to normal rules (see Verb Checks on
page 93). If there was no Check or if the check passed the statements in
the body (the Does-part) is executed. The hero is then located at the
location indicated in the exit header, which will result in the description of
the location (by executing the Description-clause of the location) and
any objects or actors present (by executing their Descriptions, explicit or
implicit).

When any actor (including the hero) is located at a location, the Entered
clause of that location is executed as if the actor had moved into that
Location. The actor that was moved will be the Current Actor even if
the movement was not caused by him (but the result of an event, for
example). Therefore, this is also the last step in the sequence of events
caused by locating the hero somewhere.

5.5 Undoing

A player might occasionally regret a command that he gave, perhaps
realising that it was not the correct one. The Alan interpreter supports
such undoing of commands. This means that the player can backup
commands that (s)he later regretted. The interpreter stores each game state
as soon as it has changed and an undo command resets the game state to
the last saved one. This works completely automatically and as many states
as memory permits is saved, giving almost unlimited undo capability.

The player command to restore a previous game state is handled directly
by the interpreter. It must consist of the single word undo.

154 -

Alan Adventure System - Reference Manual

5.6 Scripting and Commenting

Most versions of the Alan interpreter, Arun, supports both taking a
transcript of a game in progress and playing it back as input to the
interpreter.

This is very convenient during development of a game where you can play
through the game up to a point and start from there, or even automatically
test your game.

To make Arun read input from a script file you can use the special
command character ‘@’, which should be followed by the name of the text
file in which your commands are listed.

You can add comments to each line in a script file. The interpreter will not
read beyond a semicolon, ‘;’, so anything after it can be seen as a
comment. Note that this also works for direct player input.

- 155

Alan Adventure System - Reference Manual

6 HINTS AND TIPS

This chapter will give you some ideas about how the various features of
Alan may be used to implement common features in an adventure game.
These are only suggestions and you are, of course, welcome to invent your
own, but these are probably some ideas that can get you started.

Using the import mechanism of the Alan language (see Import on page 48)
you can reuse snippets that you invent in multiple games or works. By
building such a library you don't have to reinvent the same thing every
time.

A very easy way to get a lot of functionality, and learn about using the
language, is to use the Alan standard library. You you can download it
from the Alan Home Pages. It implements many of the things described
below, and loads of other handy things for you to use directly. For details
on how to use that library, refer to its documentation.

Note: The following examples, hints and tips does not use any library,
only plain vanilla Alan code.

6.1 Use of Attributes

Attributes are primarily used for holding status information about the
instance to which it belongs. This allows, for example, a water bottle to
contain three levels of water.

- 157

Alan Adventure System - Reference Manual

The bottle Isa object
Has level 3.
Verb drink

Does
If level Of bottle > 0 Then

“You take sip from the bottle.”
Decrease level OF bottle.

Else
"There is no more water in the bottle."

End If.
End Verb drink.

End The bottle.

Another example is the broken mirror.
The mirror Isa object

Is Not broken.
Verb break

Does
Make mirror broken.

End Verb break.
End The mirror.

The appropriate verbs defined in the instances may then modify the
attributes and thus update the status information.

Attributes defined for a whole class of instances also allow an extra
dimension of classification of the instances. If the following declaration is
made

Add To Every object
Not takeable.

then all objects receive the attribute “takeable” and unless the attribute is
specifically redeclared for a particular instance they will not be take-able.
Note however that the semantic meaning (what actually happens, such as
preventing the “taking”) of “takeable” must be implemented e.g. in the
verb “take”:

Verb take
Check Object Is takeable

Else "You can’t take the $o."
Does

Locate Object In inventory.
End Verb take.

158 -

Alan Adventure System - Reference Manual

In the same way restrictions concerning what is possible to eat, drink,
open etc. may be implemented. This use of attributes to classify instances
is “action- oriented”, i.e. they imply that a particular action (verb) is
applicable to the instance.

An alternate approach is to use attributes to classify instances after their
characteristics. Consider:

Verb take
Check o Is Not heavy

Else "That is much too heavy."
And o Is Not animal

Else "$+1 moves quickly away, just far enough
for you not to reach it."

Does
Locate o In hero.
"You take" Say The o. "."

End Verb take.

With this approach you need to keep track of which properties a particular
verb will accept or require. This could be extended one step further,
having verbs check actual dimensions, such as weight or size, instead.

An while we are talking about classification, the Alan 3 class concept can
help. Often a classification can be made, clearly and succinctly, by defining
a sub-class, for which every property pertaining to that type of instances
can be collected. Often, the need for an attribute disappears.

Further more, you don't need to define a syntax for a single parameter
verb if it only accepts instances from a particular class. Consider the
following definitions:

Every vehicle Isa object
End Every vehicle.

Every car Isa vehicle
 Verb drive
 Does "Yoooohooooo!"
 End Verb.
End Every car.

Every bus Isa vehicle
End Every bus.

The car1 Isa car At l
End The car1.

- 159

Alan Adventure System - Reference Manual

The bus1 Isa bus At l
End The bus1.

Without any syntax definition what so ever, Alan will supply a default
syntax for the drive verb which restricts the use of it to only instances of
car:

L
There is a car1 and a bus1 here.

> drive bus1
You can't do that.

> drive car1
Yoooohooooo!

So the class mechanism not only allows for another way to classify your
instances, but also makes it much easier to get player input handled
correctly.

6.2 Descriptions

Attributes come in handy when presenting information about instances to
the player. The attributes can be tested in If-statements to modify the
Descriptions and possibly even the short description in the Mentioned
sections.

For example:
The mirror Isa object

Is Not broken.
Description

"On the wall there is a beautiful mirror with an
 elaborate golden frame."
If mirror Is broken Then

"Some moron has broken the glass in it."
End If.

Verb break
Does

Make mirror broken.
End Verb break.

End The mirror.

160 -

Alan Adventure System - Reference Manual

If you also use this feature with the short descriptions will make the
adventure feel a bit more consistent.

The bottle Isa object
Has level 3.
Article ""
Mentioned

If level Of bottle > 0 Then
"a bottle of water"

Else
"an empty bottle"

End IF.
End The bottle.

If the bottle had level 0 and was in the hero's container, this would result
in

> inventory
You are carrying an empty bottle.

6.3 Common Verbs

As your library of adventures grow you will find that some verbs are often
needed, and always function the same way. Examples are “take”, “drop”,
“invent”, “look”, “quit” and so on. It is advisable to put them in a file
which may then be imported into your games. See section 3.4 Import on
page 48 about the import mechanism. The files may then containing these
common verbs as well as their syntax definitions and any synonyms.
Attributes needed for these particular verbs could also be placed in a
default attribute declaration in this file.

All your adventures may then import this file (or files), making these
features immediately accessible when you start a new adventure. All that
this takes is some thought as to what names to use for the attributes as
discussed in Use of Attributes on page 157.

And of course there is already an extensive library available from the Alan
website, http://www.alanif.se. It also includes a lot of other features
common to most adventure games.

- 161

http://www.alanif.se/

Alan Adventure System - Reference Manual

6.4 Distant Events

An effect of the feature that output is not visible unless the hero is present,
is that the description of an event might not always be presented to the
player.

Event explosion
"A gigantic explosion fills the whole room with smoke

and dust. Your ears ring from the loud noise. After
a while cracks start to show in the ceiling,
widening fast, stones and debris falling in
increasing size and numbers until finally the
complete roof falls down from the heavy explosion."

Make Location destroyed.
End Event.

If the hero isn’t at the location where the event is executed, he will never
know anything about what has happened. The solution is to create an
event that goes of where the hero is.

Event distant_explosion
"Somewhere far away you can hear an explosion."

End Event.
...
If Hero Nearby Then

Schedule distant_explosion At Hero After 0.
...

6.5 Doors

A common feature in adventure games is the closed door. Here’s one way
implement it:

The treasury_door Isa object At hallway
Name treasury door
Is Not open.
Verb open

Does
Make treasury_door open.
Make hallway_door open.

End Verb open.
End The treasury_door.

162 -

Alan Adventure System - Reference Manual

The hallway Isa location
Exit east To treasury

Check treasury_door Is open
Else "The door to the treasury is closed."

End Exit.
End The hallway.

The hallway_door Isa object At treasury
Name hallway door
Is Not open.
Verb open

Does
Make treasury_door open.
Make hallway_door open.

End Verb open.
End The hallway_door.

The treasury Isa location
Exit west TO hallway

Check hallway_door Is open
Else "The door to the hallway is closed."

End Exit.
End The treasury.

Note that we need two doors, one at each location, but they are
synchronised by always making them both opened or closed at the same
time. The check in the Exits makes sure that the hero cannot pass
through a closed door.

6.6 Questions and Answers

Sometimes it may be necessary to ask the player for an answer to some
question. One example is if you want to confirm an action. The following
example delineates one simple way to do this, which could be adopted for
various circumstances.

The hero Isa actor
Is Not quitting.

End The hero.

Syntax
'quit' = 'quit'.
yes = yes.

Synonyms
y = yes.

- 163

Alan Adventure System - Reference Manual

q = 'quit'.

Verb 'quit'
Does "Do you really want to give up?

Type 'yes' to quit, or to carry on just
type your next command."

Make hero quitting.
Schedule unquit After 1.

End Verb 'quit'.

Verb yes
Check hero Is quitting

Else "That does not seem to answer any question."
Does Quit.

End Verb yes.

Event unquit
Make hero Not quitting.

End Event unquit.

6.7 Actors

Actors are vital components to make a story dynamic. They move around
and act according to their scripts. To make the player aware of the other
actor’s actions they need to be described. This must be done so that the
player always get the correct perspective on the actions of the actors.

A way to ensure this is to rely on the fact that output statements are not
shown unless the hero is at the location where the output is taking place.
This means that for every actor action, especially movement, you need to
first describe the actions, then let the actor perform them and, finally,
possibly describe the effects.

An example is the movement of an actor from one location to another. In
this case the step could look something like

"Charlie Chaplin goes down the stairs to the hallway."
Locate charlie_chaplin At hallway.
"Charlie Chaplin comes down the stairs and
 leaves the house through the front door."
Locate charlie_chaplin At outside_house.
"Charlie Chaplin comes out from the nearest house."

164 -

Alan Adventure System - Reference Manual

An actor is described, for example, when a location is entered or as the
result of a Look, in the same way as objects are. This means that a good
idea is to include the description of an actor’s activities in the description
of him. One way to do this would be to use attributes to keep track of the
actors state and test these in the description clause.

The george Isa actor
Name George Formby
Is

Not cleaning_windows.
Not tuning.

Description
If george Is cleaning_windows Then

"George Formby is here cleaning windows."
Elsif george Is tuning Then

"George Formby is tuning his ukelele."
Else

"George Formby is here."
End If.

...

Although quite feasible, this is a bit tedious. As, at least a part of, the state
is indicated by the script the actor is executing, this could be used to avoid
the potentially large If-chain. The optional descriptions tied to each script
will be executed instead of the main description when the actor is
following that script. So this would allow us to simplify to:

The george Isa actor
Name George Formby
Description

"George Formby is here."
Script cleaning.

Description
"George Formby is here cleaning windows."

Step
...

Script tuning.
Description

"George Formby is tuning his ukelele."
Step

...
...

This makes it easier to keep track of what an actor is doing. Another hint
here is to describe the change in an actor’s activities at the same time as
executing the Use statement, like

- 165

Alan Adventure System - Reference Manual

Event start_cleaning
Use Script cleaning For george.
"All of a sudden, George starts to clean the windows."

End Event.

This makes the descriptions of changes to be shown when it takes place
and the description of the actor is always consistent. You can, of course,
still have attributes describing the actor’s state to customize the description
of the actor on an even more detailed level, but it generally suffices to
describe an actor in terms of what script he is executing.

6.8 Vehicles

The current version of Alan does not support actors being inside
containers or inside other actors, which could be a straight forward way to
implement vehicles. However, as the reader/player does not need to know
how the output is generated we can use a location and a row of events to
substitute for the vehicle.

Let's start with the geography:
The garage Isa location
End The garage.

The parking_lot Isa location Name 'Large Parking Lot'
End The parking_lot.

Then we need the actual car:
The car Isa object Name little red sporty ferrari Name car

At garage
Is Not running.
Has position 0.

Verb enter
Does

Locate hero At inside_car.
End Verb enter.

End The car.

We also need a description of the inside of it. We will use another location
for this:

166 -

Alan Adventure System - Reference Manual

The inside_car Isa location Name 'Inside the Ferrari'
Description

"This sporty little red vehicle can really take you
places..."

Exit out TO inside_car
Check car Is Not running

Else "I think you should stop the car before getting
out..."

Does
Depending On position Of car

= 0 Then Locate hero At garage.
= 1 Then Locate hero At parking_lot.
--- Etc.

End Depend.
End Exit.
Verb drive

Check car Is Not running
Else "You are already driving it!"

Does
Make car running.
If car At garage Then Schedule drive_to_parking After 0.
Else Schedule drive_to_garage After 0.
End If.

End Verb drive.

Verb park
Check car Is running

Else "You are not driving it!"
Does

"You slow to a stop and turn the engine off."
Make car Not running.
Cancel drive_to_parking. Cancel drive_to_garage.

End Verb park.
End The inside_car.

We must make sure that the player can just say “drive” and “park” by
defining the syntax for those single word commands:

Syntax drive = drive.
Syntax park = park.

You can also see from the code above that there are (at least) two events
that need to be defined too. They handle the movement of the car from
one place to another:

Event drive_to_parking
"You drive out from your garage and approach a large

parking lot."
Set position Of car To 1.
Locate car At parking_lot.
Schedule drive_to_garage After 1.

- 167

Alan Adventure System - Reference Manual

End Event drive_to_parking.

Event drive_to_garage
"You drive out from the parking lot and approach your own
 garage."
Set position Of car To 0.
Locate car At garage.
Schedule drive_to_parking After 1.

End Event drive_to_garage.

The main idea is that the player/reader is inside the car, and the events are
executed at this location thus emulating movement.

There is a multitude of solutions for this problem. One possibility is to
exchange the car object for an actor and the events for script steps.
However, in this solution the car object is not where the hero is
(’inside_car’) so the output from the scripts for the car will not
automatically be shown to the player. There are (at least) two different
ways to deal with this (one involving attributes, the other involving an
extra object), but the solutions are left as an exercise to the reader!

As Alan allows nesting locations (locating a location at another as if it was
an object or actor), yet another solution would be to actually move the car
location between the garage and the parking lot.

Sincere thanks go to Walt (sandsquish@aol.com) for inspiring
communication that brought this example to life.

6.9 Floating Objects

Floating objects is a term used for objects that are available everywhere, or
at least at many places. Usually they are available wherever the hero is, and
we want to avoid creating duplicate objects, so in a way we make them
float along with the hero, or some other actor, instead.

Body Parts
One example of floating objects is the various parts of the hero's body.

168 -

Alan Adventure System - Reference Manual

To create floating objects you can use a particular feature of entities,
namely the fact that they are always located where the hero is. Such an
entity can of course have the container property to allow it to contain a
number of other instances.

So to have the hero’s body parts available wherever the hero goes you can
use:

The body_parts Isa entity
Container

End The body_parts.

The right_arm Isa object Name right arm In body_parts ...
The head Isa object Name head In body_parts ...

Using entity containers is also a simple way to create other compartments
on the hero, such as a belt.

The belt Isa entity
Container

Header
If Count In hero > 0 Then "and"
Else "but" End If.
"in your belt you have"

Else
""

End The belt.

You can combine that with the following definitions of the hero and the
'invent' verb:

The hero Isa actor
 Container
 Header "You are carrying"
 Else "You are empty-handed"

If Count In belt = 0 Then "." End If.
End The hero.

Verb invent
Does

List hero.
List belt.

End Verb invent.

And the following output could result:

> invent
You are empty-handed but in your belt you have a knife.

- 169

Alan Adventure System - Reference Manual

Note: The example use the count aggregate to see if the other
container is empty or not, and select appropriate output
depending on that.

Outdoors and Indoors
Another example of floating objects are semi-abstract objects like the air,
the ground and walls. Some of these also have the extra complexity that
they should be available only under certain conditions.

Of course, you would not want outdoor things to be available when you
are indoors. To solve this, simply create yet another container object
where we can store the outdoor things when they should not be accessible
and place it where the hero can never be. Now we only need to make sure
that the objects are transferred between the two storages:

The outdoor_things Isa entity
Container

End The outdoor_things.

The outdoor_things_storage Isa object At limbo
Container

End The outdoor_things_storage.

The air Isa object In outdoor_things_storage ...
The sky Isa object In outdoor_things_storage ...

When location Of hero Is outdoors =>
Empty outdoor_things_storage In outdoor_things.

When location Of hero Is Not outdoors =>
Empty outdoor_things In outdoor_things_storage.

You need to add the boolean attribute “outdoors” to every location to the
make the rules work, of course.

And Voilà’, every time the hero arrives at an outdoor location he will find
the air and the sky. And every time he enters a location that has the
attribute outdoors set to false he will not find them available.

Well, perhaps he would like to have the air available indoors too, but that
is left as an exercise for the reader!

170 -

Alan Adventure System - Reference Manual

Note: An alternative to the location attribute, is to use classes.
Define an outdoor_location class and an indoor_location
class. Then inherit as appropriate, and the rules could instead
look like:

When location Of hero Isa outdoors_location => ...
When location Of hero Isa indoors_location => ...

Nested Locations as a Solution
Yet another option would be to make use of the nested locations feature.
Put all your outdoor locations in a outdoor location where the
outdoor_storage entity is also present (this is just a hint):

The outdoor_region Isa location
End The outdoor_region.
The park Isa location At outdoor_region
End The park.

Then the outdoor items can stay at this “region” location, no need for
rules or extra containers.

6.10 Darkness and Light Sources

A very common puzzle in old time adventures (so much so that it has
possibly been exploited beyond its potential) is the problem of dark
locations and finding a source of light.

Darkness and light sources can be implemented in Alan in different ways.
Again we basically have the choice between attributes and classes. The
solutions are both general and rather similar so we will have a look at the
solution using attributes and leave the other solution to the reader. (A
good exercise to really understand the Alan class concept, so please take a
stab at it. If you want to have a look at one solution, you can study the
Alan standard library, which uses classes to implement light sources.)

- 171

Alan Adventure System - Reference Manual

First we need an attribute that all objects have. We know we only need to
consider objects because light sources need to be transported by the
player, so they can not just be anywhere, like entities.

Add To Every object
Is

Not lightsource.
End Add To.

This ensures that all objects have the boolean (true/false valued) attribute
lightsource with the default not being a light source. Any object that
provides light need to explicitly state that they are instead. For some
instances this attribute might change value dynamically, e.g. when the lamp
is lit and extinguished.

Locations then must declare themselves as lit or not:
Add To Every location
 Is lit.
End Add To.

Here we assume most locations are lit, dark locations need to declare
themselves Not lit.

We can now count the number of instances at the current location having
the attribute lightsource set and if there are one or more there is some
light provided. So, the look verb could be reworked to:

Verb 'look'
 Check Current Location Is lit
 Or Count Isa object, Is lightsource, Here > 0
 Else
 "You cannot see anything without any light."
 Does
 Look.
End Verb.

The check of the look verb now checks the current locations need for
light and then counts instances of object, that are light sources and
present, to see if there is light.

Of course, we must also modify the dark locations so that they don't
display their descriptions upon entrance. This is easy to do using another

172 -

Alan Adventure System - Reference Manual

addition to every location, a description check, similar to the check in the
look verb:

Add To Every location
 Description
 Check Current Location Is lit
 Or Count Isa object, Is lightsource, Here > 0
 Else
 "You cannot see anything without any light."
End Add To.

6.11 Distant & Imaginary Objects

Sometimes you need to make it possible for the player to refer to things
either far away, that are not really objects or that may be at many places at
once. Examples of these are a distant mountain that may be examined
through a set of binoculars, the melody in “whistle the melody”, and water
or walls. One way of handling this is to use entities, since they are
“everywhere”. But sometimes you need better control over when they are
available and when not.

A Mountain
For objects that need to be visible from a distance, the easiest method is to
introduce a ‘shadow object’. This is a second object acting on behalf of, or
representing, the distant object at the locations where it should be possible
to refer to it. For example:

The hills Isa location
:

End The hills.

The mountain Isa object At hills
:

End The mountain.

The scenic_vista Isa location Name Scenic Vista
End The scenic_vista.

The shadow_mountain Isa object AT scenic_vista
Name distant mountain
Description

- 173

Alan Adventure System - Reference Manual

"Far in the distance you can see the Pebbly
Mountain raising towards the sky."

End The shadow_mountain.

This would allow for example at scenic_vista:

Scenic Vista.
Far in the distance you can see the Pebbly Mountain raising
towards the sky.

> look at mountain through the binoculars
...

If the mountain must be visible and possible to manipulate from a number
of locations, you might implement one shadow object for each location,
but this might become a bit tedious if they are many. If they are identical
you can use a simple rule like the following:

When hero At scenic_vista Or hero At hill_road =>
Locate shadow_mountain At hero.

This will ensure that whenever the hero moves to any of the places from
where the mountain is visible, the shadow_mountain is sure to follow.
However, as the rules are executed after the hero already has moved, a
better strategy might be to make the shadow_mountain ‘silent’, i.e. to
have no description. Instead, the description of it should then be
embedded in the description of the adjacent locations. Yet, another
possibility would be to move the pseudo-object around using statements in
the exits, like

The scenic_vista Isa location Name Scenic Vista
Exit east To path

Does
Locate shadow_mountain At path.

End Exit east.
End The scenic_vista.

Regardless of which of these strategies you chose, you need to take care
that the shadow object is not present when the real object is. In this
particular case, it should not be moved to the hills.

174 -

Alan Adventure System - Reference Manual

The Melody
To allow the player to 'whistle the melody' for example, there are two
different tactics that can be applied. One choice is to make the melody an
entity (or some subclass thereof that you have defined), because, as we
have seen, those can be manipulated from everywhere:

The melody Isa entity ...
Syntax 'whistle' = 'whistle' (m) ...

The other route would be to make it an actual object. In this case the
syntax for the whistle verb would need to indicate omnipotence, meaning
that the player can refer to instances (even those inheriting from object)
to be used as parameters even from afar.

The melody Isa object ...
Syntax 'whistle' = 'whistle' (m)! ...

The melody then does not have to be reachable, near or even be at any
location at all, for the player to be able to refer to it.

In both cases you would most likely need to restrict the parameters for the
syntax so that the player can't 'whistle the chair'. Which of the two
strategies you would chose greatly depends on things like:

• are there many things that this applies to (many 'melodies',
perhaps)?

• should the player be able to manipulate this instance in other ways?

• do you need many different entities for various purposes?

6.12 Using Events as Functions

<to be supplied>

- 175

Alan Adventure System - Reference Manual

6.13 Structure

A good thing to do when designing an interactive fiction story is to
separate the geography from the story. In Alan, you can use the import
facility to structure your Alan source. One approach could be to place the
description of each location in a separate file together with any objects that
could be considered part of the scenery or at least is not only a tool in a
puzzle. These files can then be included in a ’map’ file, which in turn is
included by the top-level file.

The story line can be divided into files too, one for each ’scene’. A scene
being comments describing the important things that are suppose to
happen, any prerequisites and objects, events, rules etc. which are specific
for this part of the story.

This strategy will both give you a better structure of your adventure as well
as help you design a better story, much like the storyboarding technique
used in making movies or plays.

6.14 Debugging

Occasionally your Alan code is flawed and you really can’t understand
what is actually happening. To aid in discovering which part of your code
is run when, the interpreter Arun incorporates some features for
debugging. There are a few debugging switches available when starting the
interpreter from the command line:

-c Log the commands input by the player
-l Log a complete transcript of the game
-t<n> Enable trace mode (<n> = level 1,2,3 or 4)
-d Start the debugger

Note: None of the above switches can be used unless the adventure
was compiled with the debug option set (see Options on page
43).

176 -

Alan Adventure System - Reference Manual

Command Logs and Game Transcripts
For various purposes, such as debugging, an actual log of the player com
mands can be handy. Such a log is created if the option -c is given to the
interpreter when starting a game. The log files are created in the directory,
which was current when the interpreter was started, the name of the log
file will begin with the game name and have the extension .log.

A command log can on some systems be used as input to the interpreter,
and thus automate the execution of the exact player experience.

You can only activate one of the logs in a single session.

Interpreter and Instruction Trace
Trace mode can also act as an aid in debugging. Level 1 will print
information about every invocation of the instruction interpreter, making
it easier to see which parts of the code are being executed.

Trace level 2, single instruction trace, will also trace every single Acode
instruction. The Acode is based on a stack machine but single instruction
trace will not show all stack operations. Level 3 shows the execution of
these also. Level 4 dumps the content of the stack for every instruction.

Debug mode
Finally, and usually most useful, there is the debug mode. If the interpreter
is started with this option, it will execute the start up sequence and then
prompt for a debug command with

abug>

Using the Debugger
Abug may also be entered during the execution of an adventure. To do
this you issue the single player command (type it at the game prompt)

> debug

- 177

Alan Adventure System - Reference Manual

The game must have been compiled with the debug option or the
command will be sent to the game which probably does not recognize it.

Typing a question mark or ‘help’ in response to the debug prompt will give
a brief listing of the commands available in Abug:

 break [file:[n]] -- set breakpoint at source line [n] in
 [file]

 delete [file:[n]] -- delete breakpoint at source line [n]
 in [file]

 files -- list source files
 events -- show events
 classes -- show class hierarchy
 instances [n] -- show instance(s)
 objects [n] -- show instance(s) that are objects
 actors [n] -- show instance(s) that are actors
 locations [n] -- show instances that are locations
 trace ('source'|'section'|'instruction'|'push'|'stack')
 -- toggle various traces
 next -- execute to next source line
 go -- go another player turn
 exit -- exit debug mode and return to game,

 enter again using 'debug' as input
 x -- d:o
 quit -- quit game

Note: Any command may be abbreviated as long as it is unambiguous.
Typing 'b' for 'break' will work, for example.

The display commands, actors, locations, objects and events, may
optionally be followed by a number. Abug will then display detailed
information about the entity requested, such as values of attributes, its
present location etc. Currently there is no way to modify anything using
Abug.

You can run the adventure to the next source line by using the next
command. If the source file is available, the interpreter will also show the
source line.

Breakpoints can be set on a source line. Enter the break command
followed by the number of the source line. Alan allows the source to be
separated into multiple files, so the interpreter always indicate which file
the source line is in, e.g. when hitting a breakpoint or stepping to the next

178 -

Alan Adventure System - Reference Manual

source line. When setting a breakpoint the current file is always assumed.
You can currently set a breakpoint in another source file by preceding the
line number with the file name delimited by a colon.

Breakpoints can be deleted. The delete command without a line number
will remove any breakpoint at the current line. You can specify which
breakpoint to delete by giving the line number (and optionally the file
name).

Note: The debugger knows on which source lines it is possible to
place a breakpoint. If you attempt to put a breakpoint at some
line where it is not possible, it will attempt to place one a line
which is numerically higher but as close a possible. This will
sometimes cause a breakpoint to be placed in a context that will
not be what you expected.

The trace command and its options corresponds to the types of traces
described in the section on Command Logs and Game Transcripts above.

Wherever different output styles are available, e.g. in GLK based
interpreters like WinArun, the Alan debugger tries to use them to
distinguish the debugger output from the output of your game by using
the pre-formatted style (see the section on styles in Output Statements on
page 108).

The following is a short excerpt from a debugging session (user input in
italics, game input/output in bold face):

<Arun, Adventure Interpreter version 3.0beta1 (2010-12-19
16:26:05)>

<Version of 'saviour.a3c' is 3.0beta1>
<Hmm, this is a little-endian machine, fixing byte ordering....
OK.>
<Hi! This is Alan interactive fiction interpreter Arun, version
3.0beta1 !>

adbg> n

- 179

Alan Adventure System - Reference Manual

adbg: Stepping to saviour.alan:1346
<01346>: "$pWelcome to the game of SAVIOUR!$pIn this game
your mission
adbg> n

Welcome to the game of SAVIOUR!

<<Game output deleted for breivity>>

adbg: Stepping to saviour.alan:1354
<01354>: Show 'logo.png'.
adbg> n

adbg: Stepping to saviour.alan:1355
<01355>: "$iVisit the Alan Home Pages at:"

adbg> break 1357
Line 1357 not available, breakpoint instead set at
saviour.alan:1358
<01358>: Visits 2.

adbg> g

 Visit the Alan Home Pages at:

 http://www.alanif.se
adbg: Breakpoint hit at saviour.alan:1358
<01358>: Visits 2.
adbg> n

Outside The Tall Building

adbg: Stepping to saviour.alan:318
<00318>: "To the north is a tall ancient building with a
large entrance.
adbg> n
To the north is a tall ancient building with a large entrance. On
the top there is a clock tower. Most of the windows in the
building are broken, and a sign with three oval objects are
hanging lose from the wall.

> north
adbg: Stepping to saviour.alan:325
<00325>: Score 5.
adbg> ?
Alan 3.0beta1 -- Adventure Language System (2010-12-19 16:26)
ADBG Commands (can be abbreviated):
 help -- this help

180 -

Alan Adventure System - Reference Manual

 ? -- d:o
 break [file:[n]] -- set breakpoint at source line [n] in
[file]
 delete [file:[n]] -- delete breakpoint at source line [n] in
[file]
 files -- list source files
 events -- show events
 classes -- show class hierarchy
 instances [n] -- show instance(s)
 objects [n] -- show instance(s) that are objects
 actors [n] -- show instance(s) that are actors
 locations [n] -- show instances that are locations
 trace ('source'|'section'|'instruction'|'push'|'stack')
 -- toggle various traces
 next -- execute to next source line
 go -- go another player turn
 exit -- exit to game, enter 'debug' to get back
 x -- d:o
 quit -- quit game
adbg> trace section
Section trace on.
adbg> n

<EXIT north[1] from Outside The Tall Building[4], Moving:>

<ENTERED in class entity[1] is empty>

<ENTERED in class location[2] is empty>

<ENTERED in instance Hall[5] is empty>

Hall

adbg: Stepping to saviour.alan:332
<00332>: "Inside the entrance is a hallway full of dust
and pieces of
adbg> instances
Instances:
 1: #nowhere
 2: pseudowords (container), at #nowhere [1]
 3: nowhere
 4: Outside The Tall Building
 5: Hall
 6: door, at Hall [5]
 7: Stairs
 8: cellar
 9: rats, at cellar [8]
 10: store
 11: spool of computer tape, at store [10]
 12: First Floor

- 181

Alan Adventure System - Reference Manual

 13: old book, at First Floor [12]
<<list abbreviated>>
adbg> instance 13
The old book [13] Isa object[4]
 Location: at First Floor [12]
 Attributes:
 Takeable[2] = 1
 Readable[3] = 1
 openable[4] = 0
 startable[5] = 0
 examinable[6] = 1
adbg> g
Inside the entrance is a hallway full of dust and pieces of the
ceiling has fallen to the floor. At the west end is a staircase,
and to the south is the exit. To the east is a folding door. It
is closed.

> west

<EXIT west[3] from Hall[5], Moving:>

<ENTERED in class entity[1] is empty>

<ENTERED in class location[2] is empty>

<ENTERED in instance Stairs[7] is empty>

Stairs
You are at the landing of an old staircase. It seem steady enough
to walk in, but be careful if you are going to use it. There is a
passage leading up, and another leading down into a dark cellar.
To the east is the hallway. A strange smell emerges from below.

> up

<EXIT up[5] from Stairs[7], Moving:>

<ENTERED in class entity[1] is empty>

<ENTERED in class location[2] is empty>

<ENTERED in instance First Floor[12] is empty>

First Floor
The landing on the first floor is as dirty as all the others.
Meters and meters of old cables are laying around, leading into a
room to the east. The stairs leads up and down. They still seem
alright. Through the dirty windows the barren field outside the
building can be seen. Almost completely covered by dust, there is
an old book laying on the floor here.

182 -

Alan Adventure System - Reference Manual

> take book and read it

<VERB 21, in parameter object(#1)=old book[13], inherited from
object[4], CHECK:>

<VERB 21, in parameter object(#1)=old book[13], inherited from
object[4], DOES:>
Taken.

<VERB 5, in parameter object(#1)=old book[13], inherited from
object[4], CHECK:>

<VERB 5, in parameter object(#1)=old book[13], DOES:>
As you carefully try to open the book it falls apart into dust
and falls
to the floor through your fingers.

> debug
adbg> instance 13
The old book [13] Isa object[4]
 Location: at nowhere [3]
 Attributes:
 Takeable[2] = 1
 Readable[3] = 1
 openable[4] = 0
 startable[5] = 0
 examinable[6] = 1
adbg> trace instruction
Single instruction trace on.
adbg> n
> north

++
1dbd: PRINT 10037, 22 "You can't go that way."
1dbe: RETURN
--

> west

++
1dbd: PRINT 10037, 22 "You can't go that way."
1dbe: RETURN
--

> east

<EXIT east[2] from First Floor[12], Moving:>

<ENTERED in class entity[1] is empty>

- 183

Alan Adventure System - Reference Manual

<ENTERED in class location[2] is empty>

<ENTERED in instance office[14] is empty>

++
 e82: LINE 0, 0
 e85: PRINT 3479, 6 "Office"
 e86: RETURN
--

++
 e89: LINE 0, 598
adbg: Stepping to saviour.alan:598
<00598>: "In front of you is a deserted office area.
Desks and chairs
adbg> g

 e8c: PRINT 3485, 404 "In front of you is a
deserted office area. Desks and chairs are piled up in one
corner. The ventilation system has partly fallen to the floor,
tearing part of the ceiling down with it. Under the twisted
tubing a couple of old coffee makers are crushed to pieces. One
shelf, having some kind of lettering, no longer readable, is
thrown to one side, and another is still standing in a corner,
full of dust."
 e8d: RETURN
--

++
 ec3: LINE 0, 616
 ec6: ATTRIBUTE 15, 17 =0
 ec7: NOT FALSE =TRUE
 ec8: IF TRUE
 ecb: LINE 0, 617
 ece: PRINT 3711, 43 " There is a ladder
laying on the floor here."
 ecf: ELSE
 :
 ee1: RETURN
--

> look

<VERB 19, GLOBAL, DOES:>

++
 71c: LINE 0, 199
 71d: LOOK
++

184 -

Alan Adventure System - Reference Manual

 e82: LINE 0, 0
 e85: PRINT 3479, 6 "Office"
 e86: RETURN
--

++
 e89: LINE 0, 598
 e8c: PRINT 3485, 404 "In front of you is a
deserted office area. Desks and chairs are piled up in one
corner. The ventilation system has partly fallen to the floor,
tearing part of the ceiling down with it. Under the twisted
tubing a couple of old coffee makers are crushed to pieces. One
shelf, having some kind of lettering, no longer readable, is
thrown to one side, and another is still standing in a corner,
full of dust."
 e8d: RETURN
--

++
 ec3: LINE 0, 616
 ec6: ATTRIBUTE 15, 17 =0
 ec7: NOT FALSE =TRUE
 ec8: IF TRUE
 ecb: LINE 0, 617
 ece: PRINT 3711, 43 " There is a ladder
laying on the floor here."
 ecf: ELSE
 :
 ee1: RETURN
--
 71e: RETURN
--

> q

In the instruction trace, lines of ’+’ characters indicates the start of
interpretation, thus they can be present inside other single step traces (like
the Look in the example above). Lines of dashes, indicates the return from
one such level of interpretation.

- 185

Alan Adventure System - Reference Manual

7 ADVENTURE CONSTRUCTION

This chapter will give a few clues on how to be a successful adventure
author, because creating a good adventure is more like writing a book than
writing a program (although Alan can be viewed as a kind of programming
language).

7.1 Getting an Idea

As with a book, the success or failure depends on how intriguing the story
is, how hooked you can get the reader (in our case the player). Therefore,
the first step must be to get a good idea. This may be hard or easy but with
time, you, like any good author, learn to pick up ideas when you get them
in ordinary every-day life, and store them for later use.

A seemingly simple idea might also be developed into a good adventure if
it is placed in the correct setting and supplied with additional features,
tricks and problems.

When you have a good idea, try to refrain from typing it in directly in a
text editor and compile it with Alan. Instead, write the story down as if it
were the story line for a book or a movie. Where appropriate, insert hints
on various diversions and alternate paths that come to mind, but try to
stay mainly with the main story from beginning to the preferred end.
Then, let a close friend read it.

- 187

Alan Adventure System - Reference Manual

7.2 Elaborating the Story

After having rewritten the story line once or twice, start creating the
scenery. If your setting is small, you could draw a map of the locations
needed, but a better way is probably to make a list of major locations first
(those essential to the story). For each location note what important
properties the location must have and which objects are necessary (just as
notes, don’t create the Alan declarations yet!). For each object, make a small
note on why the object is needed (by the player!).

This may also be done using a scene-by-scene approach. By this, we mean
that the story is segmented into scenes (and maybe also acts) like in a play.
For each act and scene, you do the above. This makes it easier to get an
overview over a larger adventure.

I also suggest that you also create a story on a level above the actual game,
at least in your own mind. This story should explain why the game-world
exists and thus give a consistency to the text that you will present to the
player. Nobody likes an adventure without a cause. This story or world of
ideas need not be revealed to the player.

This also applies to the narrator, i.e. the imaginary person or creature that
carries out the conversation with the player. Create an image of him or it
and stick to it. Receiving comments about your (limited) progress in the
game might be funny as long as they are not out of character.

7.3 Implementing it

At last, it is time to sit down at the terminal. Divide the adventure text into
files containing global verbs, the map (possibly divided further according
to the scenes), the actors (perhaps one file for each actor) and a main file
including the other files. This makes it easy to handle the adventure and
you might ask your friend to participate in the development by giving him
a few files to work with.

188 -

Alan Adventure System - Reference Manual

First, just declare the locations and connect them with exits. Do not work
on the “purple prose” descriptions yet. The Alan system supplies good
defaults for descriptions and so on so use these while developing the
structure of the adventure. Do not bother even with the details of making
it impossible to pick up the elephant, etc.

Play the adventure continuously during the development, but do not try
the things you plan to make impossible later. Just go through it according
to the line you planned the story to follow. A hint here is to use a separate
file for the start section. In this file you can easily set up the situation you
wish to test while not having to tire yourself by playing the adventure from
the start every time.

7.4 Polishing the Adventure

There, now you have a working adventure, it’s still a bit bare bones, but
still the story plays the way you planned. Now it is time to insert all the
nice descriptions, the limitations and perhaps the extra things to divert and
hinder the hero. Just be careful not to fall into the locked-door-syndrome.
Too many adventures have been tedious to play because you need to find-
key/get-key/unlock-door- with-key/open-door (anyway, why do people
go around locking doors and throwing away the keys). Think big.

Start by fixing the verbs so that they prohibit the impossible. Introduce as
many synonyms as you can think of, this makes the adventure so much
more playable.

Create the location descriptions. Remember to use the same style in all
your descriptions; breaking out of style does not look good in the eyes of
the adventurous. The descriptions must give the player the correct image,
the brain is still the best graphic interface available, but they should also
plant ideas in the player on how to solve the problems you place before
him.

- 189

Alan Adventure System - Reference Manual

Another thing to aim for is the feeling that a player gets when he somehow
finds information explaining things he has encountered earlier in the game.
Here, as always, it is good advice to ask a friend to read the texts and
convey his or her impressions (remember you know it all because you
wrote it!).

Lastly, fill in the adjectives for the objects, their descriptions and short de
scriptions (if needed).

7.5 Beta Testing

Now you might think that you can start distributing your game. But, wait!
As any complex computer program, the game may have various kinds of
bugs. Bugs in a work of interactive fiction range from misspellings and
grammar errors in your descriptions, logic errors in your implementation
of puzzles or events or omissions in the descriptions of surroundings that
make the player miss or misunderstand how to act, to inconsistencies in
the settings or story, plots that don’t work.

So how do you find these? Your only help are the beta testers. They are
the people that you now should consider first a first trial beta release of
your game. They should be people who you trust do give their honest
opinion and really play it through to find any problems.

The beta testers will probably give you a long list of issues that you have to
address before the next release. Some of the issues are simple; others may
affect the basis of your story. You should seriously consider (and if
possible discuss) such suggestions.

One aid in finding any problems in the playability of the game is to use the
log file facility of the interpreter (see the section Command Log on page
177) to produce a list of the commands a player have used. This can
greatly aid in spotting troublesome areas in your game. One common such
is where the player becomes stuck and reverts to "guess-the-verb". The log
will give you the output of the exact game played.

190 -

Alan Adventure System - Reference Manual

After having collected all this information, considered which ones to act
upon, and implemented these, you should probably do it once again
(sigh!).

Now, at long last, your adventure game is ready to meet its audience.

- 191

Alan Adventure System - Reference Manual

APPENDIX A: HOW TO USE THE
SYSTEM

How to actually set up and use the complete Alan system depends very
much on which platform, OS and in which environment you are going to
use it.

If you just want to run a game, there is of course the original command
line version distributed from http://www.alanif.se. To use this, read the
relevant sections below to get a feel for how that will work.

But there are also a number of other packages that include an Alan
interpreter, Gargoyle and Spatterlight, are two, with Gargoyle at the point
of writing, being the one most up to date, and also available on multiple
platforms.

If you actually want to write Interactive Fiction using Alan you also need
the compiler. This is distributed from http://www.alanif.se in what's called
the complete packages, including compiler, interpreter, the documentation,
a conversion program for v2 games and some examples.

Whatever option you choose, there should be more detailed instructions
on how to install included with that package. Below follows some
information pertaining to the original versions from the Alan website.

192 -

http://www.alanif.se/
http://www.alanif.se/

Alan Adventure System - Reference Manual

A.1 Compiling

Although there are other options, like a prototype AlanIDE, WinAlan et
al., basic use of the Alan Adventure Development System is through a
traditional command line batch compiler. This means that the actual
development system is a compiler that reads text files created using any
standard text editor. To compile an adventure use the following command
in a command shell:

alan <adventure>

where <adventure> is the name of the main file containing your adventure
source text. The compiler will assume an extension of “.alan” if none is
supplied. The option -help will give a brief help on other options to the
compiler.

The primary output from the compiler is an adventure code file ad
venture.a3c.

An identifying file, adventure.ifid, is also produced. This file contains a
unique identification of your game for bibliographical purposes. The
content of it will be compiled into the adventure code file, which makes
your game identifiable by electronic means. As long as this file exist the
same identification (IFID) will be used. If it does not exist, a new one will
automatically be generated.

A.2 Compiler Switches

If you run the compiler from a command line you can get information
about which switches it supports using the -help switch.

alan -help

Here are some examples of other switches:

- 193

Alan Adventure System - Reference Manual

• -charset select the character set of the input files. This can be
handy when you get a source file written on another platform, or
for Windows where you edit in a Windows editor (ISO characters)
and use the compiler in a DOS window (DOS characters). The
option should be followed with one of the keywords iso, mac or
dos

• -verbose print compiler version and other verbose messages

• -warnings, -infos show warning (and/or informational) messages
from the compilation process

• -import add a directory to the search path for imported files (see
File 146 for details on the import statement). This switch can be
used multiple times, each adding a new directory

• -listing direct compiler output (error messages etc.) to a file with
the same base name as the input (source) file, but with the
extension .lis

• -full will produce a complete listing of the source on the screen, or
if combined with the -listing option, in the listing file

• -debug include debugging information in the produced adventure
files (same as the debug option, see Options on page 43)

• -pack encode and compress the text data (same as the pack op
tion, see Options on page 43)

• -summary produce a summary about number of actors, size of
adventure files, timing information etc.

• -dump print the internal form (developers use mainly)

Giving an extra hyphen before the option reverses its meaning (where
appropriate), e.g. --warnings means don’t show warnings. Switches may
be abbreviated as long as they are unambiguous.

194 -

Alan Adventure System - Reference Manual

A.3 Running the Adventure

To play the generated adventure the Alan interpreter, arun, is executed
with the adventure name as a parameter. For example

$ arun adventure

No extension on the adventure name is allowed, the .a3c and, if
applicable, .a3r files are found automatically from that name.

On platforms with graphical user interfaces to which arun has been
natively ported will allow double clicking a game file to start a game, or
double clicking the interpreter application icon, in which case a dialogue
requesting a game will appear.

If the interpreter program is copied to a different name, it will
automatically look for a game file with the same name. Any parameters or
switches will be ignored. For example, by copying the arun program to
adventure the interpreter will, when started under the new name, directly
look for the file adventure.a3c. The files adventure and adventure.a3c
thus makes a complete game package, which is easy to start using the
single command:

$ adventure

A.4 Interpreter Switches

The interpreter supports the following switches:
-v print the version of the interpreter
-d print the version of interpreter and enter debug mode
-i ignore CRC and version errors in the adventure files
-t[<n>] various levels of execution trace, higher <n> gives more
details
-l log all player command in a log-file in the current directory

- 195

Alan Adventure System - Reference Manual

Debugging support is described in Debugging on page 176.

196 -

Alan Adventure System - Reference Manual

APPENDIX B: A SAMPLE INTERACTION

In order to give you an idea of what playing an adventure might be like, if
you do not have done that, this appendix lists a typical, and authentic,
interaction between a player and a game. Player input is preceded by a
prompt (‘>’) and is emphasised for clarity.

In reading this through, you will find that it is possible to use more or less
full imperative statements to communicate with the game. However, you
may leave out non-important words and the game usually provides a set of
common abbreviations, such as ‘w’ for ‘west’, which really means ‘go
west’.

It is also common to provide possibility to refer to multiple objects in a
command, either by use of ‘all’ or specifically listing the objects.

Your input is in italics.

West of House.
Welcome to Dungeon (ALAN Demo). This version created 29-FEB-92.
You are in an open field west of a big white house with a boarded
front door. There is a small mailbox here.

> examine the mailbox
I see nothing special about the mailbox.

> open it
The small mailbox is now open. The small mailbox contains a
leaflet.

> take the leaflet and read it
Taken!
'I hope you have noticed that this isn't your usual Dungeon but
rather an ALAN implementation brought to you by
 ThoNi & GorFo Adventure Factories
Happy Adventuring!'

> inventory
You are carrying a leaflet.

> go south

- 197

Alan Adventure System - Reference Manual

South of House.
You are facing the south side of a white house. There is no door
here, and all the windows are barred.

> east
Behind House.
You are behind the white house. In one corner of the house there
is a window which is slightly ajar.

> open the window
With great effort, you open the window far enough to allow
passage.

> go in
Kitchen.
You are in the kitchen of the white house. A table seems to have
been used recently for the preparation of food. On the table you
can see an elongated brown sack, smelling of hot peppers and a
clear glass bottle. A passage leads to the west, and a dark
staircase can be seen leading upward. To the east is a small
window which is open.

> examine all
You can't refer to multiple objects with 'examine'.

> take all
(elongated brown sack, smelling of hot peppers) Taken!
(clear glass bottle) Taken!

> up
Upstairs.
You are in the attic. The only exit is stairs that lead down. A
large coil of rope is lying in the corner. There is a square
brick here which feels like clay. A nasty-looking knife is lying
here.

> take all
(rope) Taken!
(square clay brick) Taken!
(nasty knife) Taken!

> examine knife
I see nothing special about the knife.

> down
Kitchen (again)
A table seems to have been used recently for the preparation of
food. The table is empty. To the east is a small window which is
open.

198 -

Alan Adventure System - Reference Manual

> w
Living room.
You are in the living room. There is a door to the east. To the
west is a wooden door with strange gothic lettering, which
appears to be nailed shut. There is a trophy case here. In the
center of the room is a large oriental rug.

On hooks above the mantlepiece hangs an elvish sword of great
antiquity. A battery-powered brass lantern is on the trophy case.
There is an issue of US NEWS & DUNGEON REPORT dated 29-FEB-92
here.

> move rug
With a great effort, the rug is moved to one side of the room.
With the rug moved, the dusty cover of a closed trap door
appears.

> open door
I don't know which door you mean.

> open trap door
The door reluctantly opens to reveal a rickety staircase
descending into darkness.

> take the sword, the lantern and the issue
(rug) The rug is extremely heavy and cannot be carried.
(elvish sword) Taken!
(battery brass lantern) Taken!
(issue) Taken!

> read issue
 US NEWS & DUNGEON REPORT
29-FEB-92................................Late Dungeon Edition
 --- LATE NEWS FLASH!! ---
The Dungeon prelude is now available as an ALAN implementation.
The Dungeon game was selected as an example that everybody
interested in adventure gaming should recognize.

- 199

Alan Adventure System - Reference Manual

APPENDIX C: RUN-TIME MESSAGES

This appendix describes the errors that may occur during the running of
the adventure, i.e. during interpretation of the generated Acode. There are
two classes of errors, player input response messages and system errors.

Input response errors are not fatal but abort the execution of the current
player command and discard the rest of the user input, which is a normal
part of the interaction between the player and the Alan run-time system.
System errors are fatal and abort the execution of the adventure.

C.1 Input Response Messages

Various messages are printed for the benefit of the player. Most messages
probably come from the adventure itself, i.e. they where provided by the
adventure author. However, some messages can be given directly by the
Arun interpreter. They are presented below using the Alan STRING-
format, i.e. containing the special character combinations described in
Output Statements on page 108. These standard messages exist for all
languages and the default value of the texts are selected depending upon
the setting of the language option.

The contents of any message may be modified using the Message state
ment (see section Messages on page 104). The identifier on the first line of
a message explanation is the identifier that should be used in the Message
statement to change the contents of that message. The text after the colon
on the first line is the default English message text. Then follows a short
explanation, including possible availability of parameters and their types.

All messages are available in all supported languages but below the English
texts are shown.

200 -

Alan Adventure System - Reference Manual

Note: Although the default values of the messages are static strings, it
is possible to create messages that are more dynamic. The
Message statement allows any statements, not only strings, and
supplies dynamic values as parameters for many messages. See
Messages on page 104 for details.

UNKNOWN_WORD : "I don't know the word ‘$1’."

A word not in the dictionary was used by the player.

parameter1 is a string containing the word used.

WHAT : "I don't understand."

The input did not follow any syntax the Arun parser knows about.
I.e. the input could not be matched to any of the defined syntaxes.

WHAT_WORD : "I don't know what you mean by '$1'."

The player input a multiple word, such as ”all”, “them” or a
pronoun, but the Arun parser could not find any objects or actors
that it could refer to.

parameter1 is a string which is the word used by the player.

MULTIPLE : "You can't refer to multiple objects with
'$v'."

The syntax matched for the indicated verb did not allow multiple
parameters.

NOUN : "You must supply a noun."

The player started to specify an object or actor but only supplied the
adjectives.

AFTER_BUT : "You must give at least one object after
'$1'."

In a command containing ALL BUT, the player must also give the
object or objects excluded.

- 201

Alan Adventure System - Reference Manual

parameter1 is a string containing the BUT-word the player used.

BUT_ALL : "You can only use '$1' after '$2'."

The BUT-words may only be used after an ALL-word.

parameter1 is a string containing the BUT-word used by the player.

parameter2 is a string containing the ALL-word used by the player.

NOT_MUCH : "That doesn't leave much to $v!"

The player used an ALL BUT construct, which explicitly excluded
everything matched by the ALL.

WHICH_START : "I don't know if you mean $+1"
WHICH_COMMA : ", $+1"
WHICH_OR : "or $+1."

Multiple objects (or actors) matched the words given by the player.
More adjectives are necessary to distinguish between them. The
three messages are used to list the possibilities. The player can repeat
the command with a more precise wording. The first message is
used for the first alternative, the last for the last alternative and the
middle for all the middle alternatives.

For each message, parameter1 is a reference to the alternative
instance.

WHICH_PRONOUN_START : "I don’t know if you by ‘$1’"
WHICH_PRONOUN_FIRST : "mean $+1"

When a pronoun given in a command matched multiple parameter
in the previous command, these messages are issued to explain this
and which the alternatives where. Note that the message is different
from the multiple match above only for the start of the message, the
list of alternatives are the same, i.e. WHICH_COMMA (repeated)
and WHICH_OR (the final).

202 -

Alan Adventure System - Reference Manual

NO_SUCH : "I can't see any $1 here."

The player referred to an object or actor that was not present.

parameter1 is an instance referring to an instance.

Note: If there did not actually even exist an instance in the game with
the combination of the adjectives and nouns that the player
used, the interpreter uses any instance matching the noun. This
still allows inflecting in accordance with the noun case, which is
common in many languages (English being one of few
exceptions).

NO_WAY : "You can't go that way."

A directional word was used but there is no exit in that direction.

CANT0 : "You can't do that.",

The interpreter could match the input to some syntax, but did not
find any verb body to execute. This may be a situation overlooked
by the author or the player may be trying to do something that is not
possible.

SEE_START : "There is $01"
SEE_COMMA : ", $01"
SEE_AND : "and $01"
SEE_END : "here. "

These messages are used to construct the default text for describing
things present at the current location that have no description
clause. The message parts are used as in "There is <indefinite form
object1>, <indefinite form object2> and <indefinite form object3> here ." The
underlined parts are the ones in the messages and each object is
printed in its indefinite form as appropriate.

CONTAINS : "$+1 contains"
CARRIES : "$+1 carries"

The messages above are used to construct the default headers for

- 203

Alan Adventure System - Reference Manual

listing containers. The CARRIES message is used if the container
instance is an actor.

CONTAINS_COMMA : "$01,"
CONTAINS_AND : "$01 and"
CONTAINS_END : "$01."

The messages above are used to construct the contents listing of a
container in much the same way as for the object listing above. The
messages are used according to the pattern "<header for container>
contains <indefinite form contents1>, < indefinite form contents2> and <
indefinite form contents3>."

You can modify these messages to change the formatting of listings.
e.g. to one element per line.

CAN_NOT_CONTAIN : "$+1 can not contain $+2."

If an attempt to put something in a container that does not meet the
class restrictions for the container, this message will be delivered.

IS_EMPTY : "$+1 is empty."

The default messages for empty containers.

EMPTY_HANDED : "$+1 is empty-handed."

The default messages for empty containers that are actors.

HAVE_SCORED : "You have scored $1 points out of $2."

This is the default message for presenting scores, if you use the
Score statement.

parameter1 is an integer containing the current score.

parameter2 is an integer containing the maximum score possible.

MORE : "<More>"

The classic message when the screen is full. The player should press
RETURN to proceed.

204 -

Alan Adventure System - Reference Manual

AGAIN : "(again)"

This message is presented immediately after the location name if the
location has been visited before to give the player the information
that he has visited this location before (a good thing in some
adventures). If you wish to disable this, set this message to an empty
string.

SAVE_WHERE : "Enter file name to save in"

When executing a Save the player can enter the name of the file to
save in. The name used in the previous Save is used as a default.

SAVE_OVERWRITE : "That file already exists, overwrite
(y) ? "

If the save file already existed the player must confirm overwriting.

SAVE_FAILED : "Sorry, save failed."

When executing a Save, the file system indicated some error, usually
a write protected directory or full disks.

RESTORE_FROM : "Enter file name to restore from"

A Restore statement can restore from any named file. The
previously used file name is used as the default.

SAVE_MISSING : "Sorry, could not open the save file."

When executing a Restore, Arun could not find, or open, a save file
with the name entered.

NOT_A_SAVEFILE :"That file does not seem to be an Alan
game save file."

The save file found by the Restore statement was not Alan game
save file.

- 205

Alan Adventure System - Reference Manual

SAVE_VERSION : "Sorry, the save file was created by a
different version."

The save file found by the Restore statement was created by a
different version of the Alan interpreter or the game.

SAVE_NAME : "Sorry, the save file did not contain a save
for this adventure."

The indicated save file did not contain a save of this adventure.

REALLY : "Are you sure (RETURN confirms) ? "

This is the confirmation prompt, e.g. before overwriting an already
existing save file.

QUIT_ACTION : "Do you want to RESTART, RESTORE, QUIT or
UNDO?"

The Quit statement requests an action from the player.

Note: The possible answers are currently hard-wired into the in
terpreter, so changing RESTART, RESTORE, QUIT or UNDO will
probably confuse the player!

UNDONE : "’$1’ undone."

When an action is undone, this message is presented to confirm the
player action.

parameter1 is a string containing the player command that was
undone. Note that since only commands that change any state in the
game world are logged the command might very well not be the last
command.

NO_UNDO : "No further undo available."

If the player tries to undo an action and no further actions where
recorded (because of lack of memory, undone to beginning of
session, etc.) this message is used to inform the player of that fact.

206 -

Alan Adventure System - Reference Manual

WHICH_PRONOUN_START : "I don't know if you by '$1'
WHICH_PRONOUN_FIRST : "mean $+1"

These messages are presented when the play used a pronoun which
was ambiguous. The alternatives are listed using the
WHICH_PRONOUN_FIRST followed by the message(s)
WHICH_ONE_COMMA (if there were more than two alternatives), and
finally by WHICH_ONE_OR.

IMPOSSIBLE_WITH : "That's impossible with $+1."

If a player action is impossible with a particular parameter
combination, but might be possible otherwise, this message is shown
to indicate that it is the action with the parameter that is impossible.

CONTAINMENT_LOOP : "Putting $+1 in itself is impossible."

The interpreter detected an attempt to locate an instance inside
(contained) itself. This message reliefs the author from the
responsiblility to check for every possible circumstance where this
might happen.

CONTAINMENT_LOOP2 : "Putting $+1 in $+2 is impossible
since $+2 already is inside $+1."

Same as above but in this case the containment was transitive, i.e. it
would create a containment loop with more that one instance
involved.

C.2 System Errors

System errors are errors caused by internal malfunctions. Mainly these are
implementation errors (aka. bugs!), but may (in some manner) also result
from user errors. The system error messages also have a purple prose style
to fit in with your game, e.g.:

As you enter the twilight zone of Adventures, you stumble and
fall to your knees. In front of you, you can vaguely see the

- 207

Alan Adventure System - Reference Manual

outlines of an Adventure that never was.

SYSTEM ERROR: Can’t open adventure code file.

Player Errors
These errors are usually caused by incorrect arguments or file names
entered by the player.

Can’t open adventure code file.

The player attempted to run an adventure for which there were no
code file available, probably a misspelling.

Could not read all A3C code.
Checksum error in Acode (.A3C) file (%1 instead of %2).

These two messages indicate problems in the adventure file. Possibly
caused by transfer problems of the .a3c file.

Author Errors
The following system errors are in some sense caused by the Adventure
author (you).

Out of memory.

The adventure was so large that the interpreter could not allocate
enough dynamic memory for it. Try to finish other running applica
tions (does not work or is not possible on all systems), get more real
memory, or complain to the Alan implementors. This might also be
caused by reading incomplete or corrupted game files.

Incompatible version of ACODE program.

The version of the interpreter you are using is different than the
Alan compiler used to compile the adventure. Use a different Arun
or recompile the adventure with the matching compiler.

208 -

Alan Adventure System - Reference Manual

Note: the Arun switch ‘-d’ will, beside entering debug mode, also
print the version of both the Arun interpreter and the version
of the Alan compiler used to compile the adventure.

Index not in container in 'containerMember()'

This is most likely caused by doing Random In on an empty
container.

Recursive LOOK.

This message is shown when a LOOK statement is executed as a result
of a LOOK! The LOOK statement should only be used in verb bodies.
It should not be used in descriptions of instances because there is a
definite risk that it will be executed as the effect of a LOOK, either
explicit or implicit (by the hero entering a location which would
trigger a LOOK in itself thus starting the recursion!).

Locating a location that would create a recursive loop of
locations containing each other.

This means that an attempt to locate a location inside itself has been
made. Probably in an attempt to dynamically manipulate the location
structure (the map).

Non-existing parameter referenced.

A parameter that wasn’t available was referenced. This is probably
due to using a parameter shorthand such as $2 inside a string in a
context where the syntax was restricted to only one parameter. This
may avoided by using the Say statement instead of the embedded
string parameter references, which would allow compile time
checking, thus avoiding the risk of having this happen to the player.

Note: Parameter references embedded in strings are currently not
checked during compile time.

- 209

Alan Adventure System - Reference Manual

Interpreter recursion.

The interpreter keeps track of its execution so that it can never enter
an endless loop. There are a few situations where this can occur.
One example is if the description of an instance in some way,
directly or indirectly, executes Describe This. As the interpreter is
already executing a description of the current instance the invocation
of the second will create a loop that never terminates.

Implementor Errors
Any other text in a system error message is really a SYSTEM ERROR.
Scribble down the text and contact the implementors. If possible, supply
the source for your adventure, a trace of the few last player commands (if
possible with single step and trace turned on, see Debugging on page 176).

210 -

Alan Adventure System - Reference Manual

APPENDIX D: LANGUAGE GRAMMAR

D.1 Description

The Alan language is in this manual defined using a BNF-form, which you
can see in most descriptions. The grammar is a set of rules defining what
constructs are legal in the source for an Alan program. Below follows a
brief explanation on how to interpret these rules by using some short
examples. For details on the actual rules, refer to the content of chapter 3,
Language Reference.

The BNF form divides the rules for structure of the input source by
describing it in smaller parts, which may in turn be defined by other rules.
For example, a rule might say that an ADVENTURE (in this case an Alan
program) consists of options, declarations and a start section. This
grammar rule would look like:

adventure = [options] {declaration} start_section

Each item that is an identifier (‘options’, ‘declaration’ etc.), is a construct
that in turn is defined by other rules, possibly elsewhere in the manual.

The equal sign (=) may be read as “consists of” or “is defined as”.
Optional parts are surrounded by square brackets (‘[‘ and ‘]’). Parts that
may be repeated are enclosed in curly braces (‘{‘ and ‘}’).

= : 'is defined as'

[] : 'optional'

{} : 'zero or more times'

So the rule might be read as ‘an adventure consists of options which are
optional, zero or more declarations and a start_section’.

- 211

Alan Adventure System - Reference Manual

If the item to the left of the equal sign may be defined in multiple ways,
the alternatives are divided by a vertical bar (‘|’). For example

declaration = messages
 | class
 | instance
 | verb
 | rule
 | synonyms
 | syntax
 | verb
 | event
 | addition

This definition says that a declaration might be messages, a class
definition, an instance declaration, etc.

The basic component of the language is reserved words and symbols.
These are in the rules represented by quoted strings of characters. These
are not defined elsewhere, but should instead be written as indicated.
Character case is not significant.

random_expression = ‘RANDOM’ ‘IN’ expression

The reserved words ‘random’ and ‘in’ can be followed by an expression
(which, to make sense, must refer to a container instance) to form a
'random_expression' (which in itself is an expression).

D.2 Keywords

The following is a complete list of all keywords in the Alan language. Note
that they can still be used as identifiers in a source file if the rules described
in Words, Identifiers and Names on page 143 are followed. Basically this
means that if you surround them by single quotes they can be used as
identifiers in your source code anyway. This might be especially important
if you want to use any of these words as words the player might want to
input, such as part of a name for an item.

212 -

Alan Adventure System - Reference Manual

'actor' 'add' 'after' 'an' 'and' 'are' 'article' 'at' 'attributes'
'before' 'between' 'by' 'can' 'cancel' 'character' 'characters'
'check' 'container' 'contains' 'count' 'current' 'decrease'
'definite' 'depend' 'depending' 'describe' 'description' 'directly'
'do' 'does' 'each' 'else' 'elsif' 'empty' 'end' 'entered' 'event'
'every' 'exclude' 'exit' 'extract' 'first' 'for' 'form' 'from'
'has' 'header' 'here' 'if' 'import' 'in' 'include' 'increase'
'indefinite' 'initialize' 'into' 'is' 'isa' 'it' 'last' 'limits'
'list' 'locate' 'location' 'look' 'make' 'max' 'mentioned'
'message' 'min' 'name' 'near' 'nearby' 'negative' 'no' 'not' 'of'
'off' 'on' 'only' 'opaque' 'option' 'options' 'or' 'play' 'prompt'
'pronoun' 'quit' 'random' 'restart' 'restore' 'save' 'say'
'schedule' 'score' 'script' 'set' 'show' 'start' 'step' 'stop'
'strip' 'style' 'sum' 'synonyms' 'syntax' 'system' 'taking' 'the'
'then' 'this' 'to' 'transcript' 'until' 'use' 'verb' 'visits'
'wait' 'when' 'where' 'with' 'word' 'words'

- 213

Alan Adventure System - Reference Manual

APPENDIX E: PREDEFINED PLAYER
WORDS

Alan defines a set of words for the player to use, which are required for
the syntax variations described in Player Input on page 150. These words
are available even without any declarations at all in the game source. Some
of these might conflict with, or complement, words defined in the source.
The lists below contain those player words for the currently defined
languages.

English
ALL: all everything
AND: and then
BUT: but except
THEM: them
NOISE: go the

Swedish
ALL: alla allt
AND: och
BUT: förutom utom
THEM: dem dom
NOISE: gå

German
ALL: alles
AND: und
BUT: ausser
THEM: sie
NOISE: das der die gehen

214 -

Alan Adventure System - Reference Manual

APPENDIX F: COMPILER MESSAGES

F.1 Format of messages

This appendix describes the error messages generated by the Alan
compiler. The compiler presents the messages in the order of occurrence
in the file. The offending source line is always shown together with the
message. The following example illustrates a typical compiler output.

ZILexample.alan

23. If barfoo Is foobared Then
====> 1
1 310 E : Identifier 'barfoo' not defined.

27. Exit north To Rumble.
====> 1
1 310 E : Identifier 'rumble' not defined.

28. Exit west To Tumble.
====> 1
1 310 E : Identifier 'tumble' not defined.

46.
====> 1
1 101 E : 'START' 'HERE' '.' inserted.
1 211 E : Must start at a Location.

 5 error(s).
 No detected warnings.
 2 informational message(s).

The following information is available in the compiler listing, framed for
visibility:

1. File name
2. Line number and source text of a line
3. Message indicator, pointer, message number and text
4. Message summary (three lines)

- 215

1.

2.

3.

1.

Alan Adventure System - Reference Manual

For information on how to select which levels of messages to show and
where output is directed, refer to the options and their descriptions in
section Compiler Switches on page 193.

F.2 Message explanations

For each message, a short description of the error, possible causes etc. are
given. Each message reported also indicates the severity of that error. The
message is supplemented with an indication of its severity. An
informational message (indicated by the letter ‘I’) simply gives some
information to the user, a warning message (‘W’) indicates an error but the
compilation still generates a valid output (although not always what the
user intended). Error messages (‘E’) indicate errors that have made it
impossible to generate any output, but the compiler will continue to
process all input. Fatal (‘F’) and system (‘S’) messages always terminate the
compilation process immediately.

The message descriptions below may also contain the special insertion
markers ‘%n’ (where n is a digit), which indicate that text will be inserted at
that point in the message during compile time, e.g. the offending identifier
or a file name.

100 Parsing resumed here.
A severe syntax error was discovered. Some input was skipped. This
error message marks the place where the parsing was restarted.

101 %1 inserted.

A syntax error was discovered and one or more symbols inserted in
the input in an attempt to recover.

102 %1 deleted.

A syntax error was discovered and one or more symbols were
skipped from the input in an attempt to recover.

216 -

Alan Adventure System - Reference Manual

103 %1 replaced by %2.

A syntax error was discovered and one or more symbols were
replaced by one or more other symbols in an attempt to recover.

104 Severe syntax error, construct ignored.

An intricate syntax error was discovered. A complete construct was
skipped in an attempt to recover.

105 Syntax error, couldn’t recover.
106 Parse stack overflow.
107 Parse table error.
108 Parsing terminated.

Alan compiler implementation errors. Should not occur!

150 Unterminated STRING.

An opening double quote was not terminated by a closing quote
before end of file. Error message points to the opening quote.
Remember STRINGs may cover several lines.

151 File name missing for $INCLUDE directive.

An include directive was given but no file was indicated. The com
plete file name must be given according to the rules in section File
on page 146.

- 217

Alan Adventure System - Reference Manual

198 Could not open output file '%1' for writing.

The indicated output file could not be opened, probably because the
directory did not exist or the file or directory was write-protected.

199 Adventure source file (%1) not found.

The source file given on the command line did not exist. The Alan
compiler adds the .alan extension to the file name given, if it did not
include a period.

201 Mismatched block identifier, ’%1’ assumed.

The identifier following a terminating END did not match the one
given at the beginning of the construct. This indicates an illegal
nesting or a missed END IF. The identifier indicates to which block
the END is assumed to belong.

202 Multiple usage of direction ’%1’ in this Exit.
203 Multiple definition of Exit ’%1’ in this location.

The directional word indicated was used more than once, either in
the same, or different exit declaration from the location. This is
contradictory and not legal.

204 Multiple definition of %1 DEFAULTS. Ignored.

Only one declaration of default attributes per type is allowed. The
second declaration is ignored.

205 Multiple usage of ’%1’ in this VERB definition.

When specifying actions for multiple verbs in the same declaration,
the indicated word occurred twice.

206 Multiple definition of SYNTAX for %1.

More than one syntax definition for the same verb was found. This
is an error. You should remove the offending one.

218 -

Alan Adventure System - Reference Manual

207 VERB ’%1’ is not defined.

A SYNTAX construct defined the syntax for a verb that was never de
fined.

208 ’%1’ is not a VERB.

The identifier on the left hand side of a SYNTAX definition was de
fined as something that was not a VERB.

209 First element in a SYNTAX must be a player word.

The definition of a SYNTAX construct may not start with a
parameter. The first word must be a player word so as to distinguish
it from other forms of input.

210 Action qualification not allowed here.

The BEFORE, AFTER and ONLY qualifiers may not be used in a DOES-
clause in this context.

211 Adventure must start at a Location.

You specified a where expression in the START section that did not
specify an explicit location. The start section specifies where the
hero starts and must be a LOCATION.

212 Syntax parameter ’%1’ overrides symbol.

The SYNTAX definition valid in this context defined a symbol that is
the same as an entity (class or instance). The syntax parameter will
take precedence.

- 219

Alan Adventure System - Reference Manual

213 Verb alternatives not allowed here.

You may only specify different verb body alternatives within objects.
The global verb body and the verb body in the location may not
have alternatives.

214 Parameter not defined in syntax for ’%1’.

The identifier given as the selector in a verb body alternative was not
defined in the syntax for that verb.

215 Syntax not compatible with syntax for ’%1’.

To be able to use the same body for different verbs by supplying
them in a comma-separated list in the verb header they must all be
compatible. This means that they have the same number of
parameters and the parameters have the same names. Otherwise
conflicts will arise when figuring out which parameter to use.

216 Parameter ’%1’ multiply defined in this SYNTAX.

The parameter was defined more than once in the same SYNTAX
definition.

217 Only one multiple parameter allowed for each syntax.
This one ignored.

To be able to use multiple parameters in a player command only one
parameter may be marked as referring to multiple objects or actors
using ALL or conjugations. This is a warning, the syntax will be as if
the first multiple marker was the only one.

218 Multiple definition of attribute ’%1’.

The indicated attribute name was defined more than once in the
same context (default attribute list or within the same entity).
Remove one definition.

220 Multiple definition of ’%1’.

The indicated word has multiple, and possibly different, definitions.

220 -

Alan Adventure System - Reference Manual

221 Multiple class restriction for parameter ’%1’.

The same parameter occurred more than once in the list of class re
striction in the same SYNTAX definition.

222 Identifier ’%1’ in class definition is not a
parameter.

Only the parameters in the syntax may be referenced in the class-re
stricting clause of a SYNTAX definition.

230 No syntax defined for this verb, assumed ’%1
(object)’.

This message is a warning to indicate that the default syntax
handling has been used.

310 Identifier ’%1’ not defined.

The indicated word was never defined. It must be declared either as
a location, an object, a container, an actor or an event.

311 Must refer to %1.

The construct indicated does not refer to the correct kind of item,
the message indicates which kind of item was expected.

312 Parameter not uniquely defined as %1, which is
required.

In certain contexts it is necessary to refer to a particular type of
entity, e.g. the IN expression must refer to a container or an object
with the container property. If the reference (the WHAT part) is a
parameter identifier, this parameter must be restricted to be of the
required type by use of parameter restrictions (such as ‘WHERE c
ISA CONTAINER’).

- 221

Alan Adventure System - Reference Manual

315 Attribute not defined for ’%1’.

The indicated attribute is not defined for the particular object,
location or actor. It must either be a default attribute or be locally
declared.

318 Entity ’%1’ is not a Container.

The referenced entity (object or actor) was not declared to have the
container property, although the context required a container.

320 Word ’%1’ belongs to multiple word classes (%2 and
%3).

A word was declared as to belong to different word classes such as
noun, verb, adjective etc. Only multiple declarations that may lead to
unexpected behaviour are reported, usually because of limitations in
the current implementation. Generally it is allowed to declare a word
e.g. as both an adjective and a noun.

321 Synonym target word ’%1’ not defined.

To define a synonym its target word (the word on the left side of the
equal sign) must be defined as a proper word elsewhere in the
source.

322 Word ’%1’ already defined as a synonym.

A word may not be declared as a synonym for different target
words.

330 Wrong types of expression. Must be of %1 type.

In an expression, a value or an expression was used that had a type
that was not allowed. The message indicates the correct type.

331 Incompatible types in %1.

The two values in an expression with a binary operator did not have
compatible types, or the value used in a SET statement was not type
compatible with the referenced attribute.

222 -

Alan Adventure System - Reference Manual

332 Type of local attribute must match default attribute.

An attribute declared locally (within an object, actor or location) that
has the same name as a default attribute, has to have the same type
(Boolean, integer or string).

333 The word ’%1’ is defined as a synonym as well as of
another word class.

Synonyms must be words not defined elsewhere.

400 Script not defined for Actor ’%1’.

No script with the indicated identity was defined for the actor.

401 Actor reference required outside Actor specification.

Inside an actor specification it is permissible to leave out the actor
reference in a USE statement in which case the surrounding actor is
assumed. Outside actor specifications, the actor reference must
always be supplied.

402 An Actor can’t be inside a Container.

The LOCATE statement tried to locate an actor inside a container.
This is not allowed.

403 Script number multiply defined for Actor ’%1’.

The indicated number was used for more than one script for the
same actor.

404 Attribute to %1 must be a default attribute.

To reference attributes for OBJECT, LOCATION and ACTOR the at
tribute used must be a default attribute, as all objects, locations or
actors must have it.

405 The class of a parameter used in %1 must be uniquely
defined.

In some statements the class of the identifier must be determined

- 223

Alan Adventure System - Reference Manual

during compile time. This is, for example, the case in MAKE and SET
statements.

406 A parameter defined as Container have no default
attributes.

A parameter that was restricted to containers do not have any
default attributes. Actors, objects and locations have separate sets of
default attributes. In order to refer to an attribute on a parameter it
must be restricted to one of these classes. If the parameter also
requires the container property, use CONTAINER ACTOR or
CONTAINER OBJECT.

407 Attribute in LIMITS must be a default attribute.

All objects must have the attribute that a limit is to test.

408 Attributes in %1 must be of Boolean type.

The attribute referenced in the indicated context must be a Boolean
attribute.

409 No parameter defined in this context.

No parameter is defined in the context where a reference to OBJECT
was made. Parameters are only defined within checks and bodies of
verbs, so the use of OBJECT (an obsolete construct, use the
parameter identifier instead) is also restricted to those contexts. See
Run-time Contexts 152.

410 A parameter may not be used in %1.

In certain statements a parameter may not be used at all.

411 %1 ignored for Actor ’hero’.

It is allowed to redefine the predefined actor HERO (the player). This
makes it possible to define local attributes and descriptions for the
hero. However any definition of scripts or initial location is ignored
(the script is supplied by the player in his input and the initial

224 -

Alan Adventure System - Reference Manual

location is defined in the START section).

412 ’ACTOR’ is not allowed inside events.

In events no actor is active. This means that no reference to the
active actor can be made. See Run-time Contexts 152.

413 Expression in %1 must be of integer type.

The context required a numeric expression.

414 Invalid initial location for %1.

The initial location specified was not valid.

415 Invalid Where specification in %1 statement.

The statement indicated does not allow the WHERE specification
used.

416 Interval of size 1 in RANDOM expression.

This message informs that the interval in a RANDOM statement was
just one single value, resulting in always returning the same value,
not very random.

417 Comparing two constant entities will always yield the
same result.

The expression compared two identifiers none of which was a
parameter. This will always give the same result. This is probably an
error, but the message is still a warning as it gives a perfectly running
adventure (but, perhaps not what you intended?).

418 Aggregate is only allowed on integer type attributes.

The aggregates MAX and SUM can only perform their calculation on
integers.

- 225

Alan Adventure System - Reference Manual

419 Expression in %1 must be of integer or string type.

In the indicated context only integer and string type expressions may
be used.

501 LOCATION ’%1’ has no Exits.

In case the hero is located at the indicated location he may not be
able to escape from that location. This may be intentional (as for a
limbo location or a location with magic words to use as an escape)
but the warning is presented as a reminder.

600 Multiple use of option ’%1’, ignored.

The indicated option was used more than once, this occurrence is ig
nored and the previous setting used.

601 Unknown option, ’%1’.

A word was given in the option section that was not the name of an
option.

602 Illegal value for option ’%1’.

The indicated option does not allow the value used.

997 SYSTEM ERROR: %1

A severe implementation dependent error has occurred (a bug!).
Please report.

998 Feature not implemented in %1.

The combination of some syntactically correct but semantically
tricky constructs is not yet implemented. Please report.

999 No Adventure generated.

When an error is detected this informational message is given to
indicate that no executable adventure was output.

226 -

Alan Adventure System - Reference Manual

APPENDIX G: LOCALIZATION

To create adventures in languages other than English, there are a few
separate issues to consider. The sections below describes the support that
Alan provides for each of them.

G.1 Character/Glyph availability

Most languages have characters, or glyphs, other than the common ones
used in English, like ö, Ñ or æ. Alan uses a character encoding called ISO-
8859-1 which allows for many characters (but not all) used in European
and other countries.

To make use of these characters you just need to make sure that the
adventure text files use this character encoding. Usually you can do this in
the editor you are using, often when you save a file the first time, or there
should be a setting in your operating system to define the default
encoding.

If the Alan source files are encoded using ISO-8859-1 they will be
presented correctly when the game is run using e.g. WinArun. If you run
the games in console mode you have to ensure that both your console
program and your operating system are set (and able) to show characters
using the ISO-8859-1 encoding.

G.2 Standard messages

There are two main types of messages that are output by various parts of
the Alan system, messages that are built in to the compiler, and messages
that are issued by (one of) the standard library.

- 227

Alan Adventure System - Reference Manual

The only way to translate messages in the library is to translate the library.
This is probably what you want to do anyway, since most of the verbs
would be in English.

Messages built into the compiler are generated automatically into the game
file, e.g. as error messages like “You can't do that.” These can either be
changed by the Language option (if the language of your choice is already
supported), or translated using the Message statement. Appendix Run-time
Messages on page 200 lists all such messages and their content.

There are a few special words that are currently not author translatable, as
described in Appendix Predefined player words on page 214.

G.3 Player words

TBD.

G.4 Word variations

TBD.

G.5 Word order

TBD.

228 -

Alan Adventure System - Reference Manual

APPENDIX H: PORTABILITY OF GAMES

The adventure files produced by the Alan compiler is compatible across all
supported platforms. This means that by copying the binary .a3c file (and
any .a3r file if available) to another machine it should be possible to run
the game on that new machine without any changes. Note however that
the files must be transferred in binary mode (where applicable). All
characters are automatically converted to the native set allowing multi-
national characters to be presented correctly even on machines that do not
support the IS0 8859-1 standard. This is of course restricted to characters
having a representation in the current native character set.

It is a strong goal to achieve complete portability of the games to be able
to provide games for all supported platforms without re-compilation.
Game authors are encouraged to seriously consider this when designing
games and not use any system specific characters, character combinations
or special commands that may be available on some systems.

Portability between different versions of the system is not guaranteed.
Again, it is a strong goal to be backwards compatible, at least between
different builds within the same major version. This means that the most
recent v3 interpreter should run games from all previous v3 compilers.

Changes in the game file format may occur between versions, which may
or may not be compatible. Conversion tools may be available, older
interpreter versions can be requested.

- 229

Alan Adventure System - Reference Manual

APPENDIX I: COPYING CONDITIONS

The Alan System is distributed under the Artistic License 2.0 for which the
full text follows. The intent of this licensing is that the Copyright Holder
retain some control over the development of the Alan System, while still
keeping it available as open source and free software.

In practical terms this means that the licensing is chosen so that it should
be possible to

 freely distribute games produced with the Alan system, including
for profit

 re-distribute compiled versions of the Alan system, including
together with a game which is not open source or free, provided
there is no charge for the Alan system

 redistribute compiled and/or source versions of the original Alan
system (the Standard Version)

 acquire the source code for the Standard Version

 modify the source code for private use

 re-distribute compiled and/or source of a Modified Version
provided they are done so under a compatible license with
appropriate attribution *and* that the modification is described
and made available, preferably by returning it to the Copyright
Holder so that it can be merged into the Standard Version

230 -

Alan Adventure System - Reference Manual

I.1 Artistic License 2.0

Preamble
This license establishes the terms under which a given free software
Package may be copied, modified, distributed, and/or redistributed. The
intent is that the Copyright Holder maintains some artistic control over the
development of that Package while still keeping the Package available as
open source and free software.

You are always permitted to make arrangements wholly outside of this
license directly with the Copyright Holder of a given Package. If the terms
of this license do not permit the full use that you propose to make of the
Package, you should contact the Copyright Holder and seek a different
licensing arrangement.

Definitions
"Copyright Holder" means the individual(s) or organization(s) named in
the copyright notice for the entire Package.

"Contributor" means any party that has contributed code or other material
to the Package, in accordance with the Copyright Holder's procedures.

"You" and "your" means any person who would like to copy, distribute, or
modify the Package.

"Package" means the collection of files distributed by the Copyright
Holder, and derivatives of that collection and/or of those files. A given
Package may consist of either the Standard Version, or a Modified
Version.

"Distribute" means providing a copy of the Package or making it
accessible to anyone else, or in the case of a company or organization, to
others outside of your company or organization.

- 231

Alan Adventure System - Reference Manual

"Distributor Fee" means any fee that you charge for Distributing this
Package or providing support for this Package to another party. It does
not mean licensing fees.

"Standard Version" refers to the Package if it has not been modified, or
has been modified only in ways explicitly requested by the Copyright
Holder.

"Modified Version" means the Package, if it has been changed, and such
changes were not explicitly requested by the Copyright Holder.

"Original License" means this Artistic License as Distributed with the
Standard Version of the Package, in its current version or as it may be
modified by The Copyright Holder in the future.

"Source" form means the source code, documentation source, and
configuration files for the Package.

"Compiled" form means the compiled byte code, object code, binary, or
any other form resulting from mechanical transformation or translation of
the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use
Modified Versions for any purpose without restriction, provided that you
do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the
Standard Version of this Package in any medium without restriction, either
gratis or for a Distributor Fee, provided that you duplicate all of the
original copyright notices and associated disclaimers. At your discretion,
such verbatim copies may or may not include a Compiled form of the
Package.

232 -

Alan Adventure System - Reference Manual

(3) You may apply any bug fixes, portability changes, and other
modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such will be
subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis or
for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs from
the Standard Version, including, but not limited to, documenting any non-
standard features, executables, or modules, and provided that you do at
least ONE of the following:

(a) make the Modified Version available to the Copyright Holder of the
Standard Version, under the Original License, so that the Copyright
Holder may include your modifications in the Standard Version.

(b) ensure that installation of your Modified Version does not prevent the
user installing or running the Standard Version. In addition, the Modified
Version must bear a name that is different from the name of the Standard
Version.

(c) allow anyone who receives a copy of the Modified Version to make the
Source form of the Modified Version available to others under

(i) the Original License or

(ii) a license that permits the licensee to freely copy, modify and
redistribute the Modified Version using the same licensing terms that apply
to the copy that the licensee received, and requires that the Source form of
the Modified Version, and of any works derived from it, be made freely
available in that license fees are prohibited but Distributor Fees are
allowed.

- 233

Alan Adventure System - Reference Manual

Distribution of Compiled Forms of the Standard Version or Modified Versions
without the Source

(5) You may Distribute Compiled forms of the Standard Version without
the Source, provided that you include complete instructions on how to get
the Source of the Standard Version. Such instructions must be valid at the
time of your distribution. If these instructions, at any time while you are
carrying out such distribution, become invalid, you must provide new
instructions on demand or cease further distribution. If you provide valid
instructions or cease distribution within thirty days after you become
aware that the instructions are invalid, then you do not forfeit any of your
rights under this license.

(6) You may Distribute a Modified Version in Compiled form without the
Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or
Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the
Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license
apply to the use and Distribution of the Standard or Modified Versions as
included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with other
works, to embed the Package in a larger work of your own, or to build
stand-alone binary or byte code versions of applications that include the
Package, and Distribute the result without restriction, provided the result
does not expose a direct interface to the Package.

234 -

Alan Adventure System - Reference Manual

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that merely
extend or make use of the Package, do not, by themselves, cause the
Package to be a Modified Version. In addition, such works are not
considered parts of the Package itself, and are not subject to the terms of
this license.

General Provisions

(10) Any use, modification, and distribution of the Standard or Modified
Versions is governed by this Artistic License. By using, modifying or
distributing the Package, you accept this license. Do not use, modify, or
distribute the Package, if you do not accept this license.

(11) If your Modified Version has been derived from a Modified Version
made by someone other than you, you are nevertheless required to ensure
that your Modified Version complies with the requirements of this license.

(12) This license does not grant you the right to use any trademark, service
mark, trade name, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide, free-of-
charge patent license to make, have made, use, offer to sell, sell,
import and otherwise transfer the Package with respect to any
patent claims licensable by the Copyright Holder that are
necessarily infringed by the Package. If you institute patent
litigation (including a cross-claim or counter-claim) against any
party alleging that the Package constitutes direct or contributory
patent infringement, then this Artistic License to you shall
terminate on the date that such litigation is filed.

(14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE
COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS' AND
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES. THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR

- 235

Alan Adventure System - Reference Manual

A PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE
DISCLAIMED TO THE EXTENT PERMITTED BY YOUR LOCAL
LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT HOLDER
OR CONTRIBUTORWILL BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

I.2 Executive Summary

So, in short, the interpreter Arun and any game produced using the Alan
System is yours. You may sell or copy it as you like, and as you need the
interpreter to run the game, it may be copied freely too. The Arun
interpreter may also be uploaded on BBS'es or FTP-sites to allow players
to download an interpreter for his platform and use that to run your game.

The documentation and examples are free to copy or place on any BBS'es
or FTP-sites if their contents are not changed.

If you create a game using the Alan System, we’d very much like to see it.
Send us a copy (preferably in source) and any documentation or a
description of the game and its novel features. We will of course honour
any copy-restrictions that you might want to place on it.

Short games or samples of Alan source are also most welcome as examples
that we might use and distribute to other users. Sending an example means
that you waive all rights to it. Examples add to the suite of test data and
thus help us further improve the quality of the Alan system.

236 -

Alan Adventure System - Reference Manual

INDEX
A
abstract attribute..65

Abug..177

actor..23
behaviour..23
predefined class.................................33, 53

ACTOR..
in what specifications............................130

actor description..53

actors...
execution context..................................153
hints about..164
moving..154

adjective..60

AFTER qualifier..97

ALL...........................74, 86, 94, 151, 201, 202

AND..86, 150, 151

article...71

Arun...176, 195, 200

attributes..29, 157
boolean..64
declaration...63
event type..65
numeric ..64
of reference type......................................65
string..64

B
basic type..45

BEFORE qualifier..97

BETWEEN...137

BNF..211

BUT...151, 201, 202

C
CANCEL statement...................................117

character combinations, in strings............109

character sets..44

CHECK..93
in exits...81, 154
in verbs..36

check, unconditional.....................................94

checks..
execution order......................................100

class...
syntax for..49

class expressions..135

classes..49

comparisons...
equality..136

compatible types..47

computer language..18

concatenation...
of strings...136

CONTAINER...75

container property...
of objects...75

containment operator.................................137

CONTAINS..137

COUNT...139
in limits..77

Current Actor..137

- 237

Alan Adventure System - Reference Manual

Current Location...137

D
debugging...176

DECREASE statement..............................118

default...
attributes...161
syntax...37

DEPENDING ON statement.................122

DESCRIBE statement...............................111

description..
of locations...55

Description...
of locations...27

DESCRIPTION..
of actor scripts.................................82, 165

Description clause...69

descriptions..
execution context..................................152

DIRECTLY...139

DOES...
in descriptions..70
in exits...154
in locations..154
in verbs..95

doors, hints about.......................................162

double quotes..146

E
EMPTY statement......................................115

Entered clause...69

entity..
predefined class.................................33, 52

EVENT..100

event type...46

events..
execution context..................................153
hints about..162

EVERYTHING..151

EXCEPT...151, 202

execution...
contexts...152
of an adventure................................21, 149

execution context..
Initialize clause...69

Exit..27

EXIT..81, 154

expressions...131

EXTRACT...78

H
HERE...128

hero...154

hero, the..54

I
identifier..

quoted..60

identifiers..
lexical definition.....................................143

If statement..29, 48

IF statement...121

import statement...48

INCREASE statement...............................118

indicator..
multiple...86
omnipotent...87

INDIRECTLY..139

Infocom..16, 17

inheritance...31, 50

238 -

Alan Adventure System - Reference Manual

inheriting attributes.......................................67

inheriting properties, rules for.....................57

Initialize clause...68

initialize empty set...66

instance...
displaying..61

instance type..46

instances...50

integer...
predefined class..33

interpreter..177, 195

IT 151, 201

L
languages..200

LIMITS...76

LIST statement..112

literal..
predefined class..33

literals...56, 131

Locate statement...30

LOCATE statement...................................114

locating inside containers76, 115

location...22, 26
of 133, 170
predefined class..33

LOCATION..
in what specification..............................130

locations..55

logical expressions.......................................134

LOOK statement..125

M
Make statement...29

MAKE statement..118

map..22

MAX aggregate..140

MENTIONED...74

MIN aggregate...140

Multi-media Statements.............................113

multinational characters...............................44

multiple indicator..151

multiple parameters....................................151

N
Name...

of locations.......................................60, 144

Name clause...59

names..
inheriting...61
multiple...60

NEARBY...129

nested locations.....................................55, 115

noun..60

numbers..
lexical definition.....................................145

O
object..28

predefined class.................................33, 53

object orientation..31

omnipotent indicator152

ONLY qualifier...97

operators...
binary...135
logical...134
relational..136

options..42, 43

- 239

Alan Adventure System - Reference Manual

output statements..109

P
parameter...37, 88

indicators...86
referencing..151

Play..113

player commands..149

polymorphism..32

predefined classes..32

prompt..26

Prompt Section..106

pronoun..
predefined...63

Pronoun clause..62

properties..56

property..56

Q
QUIT statement..125

quoted identifier...................................60, 143

R
Random........................53, 105, 116, 133, 134

expression...133
Random In..133

reference attribute45, 46, 47, 65, 67, 68, 112,
119, 120, 123, 124, 132, 223

RESTORE statement.................................126

restriction..
of parameters..38

restriction, of parameters.............................88

rule..101

rules...
executing...102

execution context..................................153

S
SAVE statement..126

SAY statement...111

SCHEDULE statement.............................116

SCORE statement.......................................126

SCRIPT..82

semantics..
 of locations..55

semantics of pre-defined classes...........33, 51

Set statement..29

SET statement...119

set type..47

set type attributes..66

shadow object;object...
shadow..173

Show...113

single quotes..145

spacing, in strings..146

specialisation..34

start section..42, 107

STEP...83

step, executing the last..................................84

string..
comparisons...136
functions...116
predefined class..33

String...27

STRING...109

strings..
lexical definition.....................................146

STRIP statement...116

sub-classing..34

240 -

Alan Adventure System - Reference Manual

SUM aggregate..140

SYNONYMS...103

Syntax..37

SYNTAX..84

syntax, default..90

T
THEM..151, 201

THEN..150

thing...
predefined class..33
 predefined class52

THIS expression...138

transitivity...
Direct...139
Indirect..139

types of expressions131

typographical notation..................................25

U
undo..154

Use statement..48

USE statement......................................82, 123

V
verb...24

alternative ...96
execution context..................................152
execution order..................................38, 99
qualifiers ..95, 97
reusing common....................................161

Verb..35

VERB..92

VISITS statements......................................127

W
what specifications......................................130

WHEN...101

where specification.....................................128

- 241

	1 Introduction
	1.1 Programmer’s Pitch
	1.2 To the Reader

	2 Concepts
	2.1 What Is An Adventure?
	2.2 Elements Of Adventures
	2.3 Alan Fundamentals
	What Is A Language?
	The Alan Idea
	What’s Happening?
	The Map
	The Things
	Other People and Monsters
	Acting
	The Input

	2.4 Introduction to the Language
	Notation
	The Locations
	The Objects
	The Actors
	Inheritance and Object Orientation
	Inheritance and Instances
	Polymorphism
	Every and The
	The Pre-defined Classes
	Creating Classes and Instances
	Specialising and Overriding

	The Verb Construct
	Checking Things

	The Syntax
	Text Output Formatting

	3 Language Reference
	General Rules
	3.1 An Adventure
	3.2 Options
	3.3 Types
	Basic, Simple and Compound Types
	Instance Type
	Event Type
	Set Type
	Type Compatibility
	Type Requirements

	3.4 Import
	3.5 Classes
	Inheritance

	3.6 Instances
	Entities
	Things
	Objects
	Actors
	The Hero

	Locations
	Literals

	3.7 Properties
	Inheriting Properties
	Initial Location
	Names
	Inheriting Names
	Displaying Instances

	Pronouns
	Attributes
	Boolean Attributes
	Numeric and String Attributes
	Event Attributes
	Reference Attributes
	Set Type Attributes
	Inheriting Attributes

	Initialize
	Description
	Articles and Forms
	Articles
	Form
	Printing

	Mentioned
	Container Properties
	Limits
	Header and Else
	Extract

	Verbs
	Entered
	Exits
	Scripts
	Steps

	3.8 Additions
	3.9 Syntax Definitions
	Indicators
	Parameter Restrictions
	Syntax Synonyms
	Default Syntax
	Scope

	3.10 Verbs
	Verbs in Locations
	Verb Checks
	Does-clause
	Verb Alternatives
	Verb Qualification
	Verb Execution
	Controlling Execution with Qualifiers

	3.11 Events
	3.12 Rules
	3.13 Synonyms
	3.14 Messages
	Message parameters

	3.15 Prompt Section
	3.16 Start Section
	3.17 Statements
	Output Statements
	String Statement
	Style Statement
	Describe Statement
	Say Statement
	List Statement

	Multi-media Statements
	Show Statement
	Play Statement

	Manipulation Statements
	Locate Statement
	Empty Statement
	Strip Statement

	Event Statements
	Schedule Statement
	Cancel Statement

	Assignment Statements
	Make Statement
	Increase and Decrease Statements
	Set Statement
	Include Statement
	Exclude Statement

	Conditional Statements
	If Statement
	Depending On Statement

	Actor Statements
	Use Statement
	Stop Statement

	Repetition Statements
	Special Statements
	Quit Statement
	Look Statement
	Save and Restore Statements
	Score Statement
	Visits Statement
	Transcript Statement

	3.18 WHERE Specifications
	3.19 WHAT Specifications
	3.20 Expressions
	Types of Expressions
	Literal Values
	Attribute References
	Location Of

	Random Values
	Logical Expressions
	Class Expressions
	Binary Operators
	Relational and Equality Operators
	String Containment
	Current Entities
	This Instance
	The Whereabouts of an Entity
	Aggregates

	3.21 Filters

	4 Lexical Definitions
	4.1 Comments
	4.2 Words, Identifiers and Names
	4.3 Numbers
	4.4 Strings
	4.5 Filenames

	5 Running An Adventure
	5.1 A Turn of Events
	5.2 Player Input
	5.3 Run-time Contexts
	5.4 Moving Actors
	5.5 Undoing
	5.6 Scripting and Commenting

	6 Hints And Tips
	6.1 Use of Attributes
	6.2 Descriptions
	6.3 Common Verbs
	6.4 Distant Events
	6.5 Doors
	6.6 Questions and Answers
	6.7 Actors
	6.8 Vehicles
	6.9 Floating Objects
	Body Parts
	Outdoors and Indoors
	Nested Locations as a Solution

	6.10 Darkness and Light Sources
	6.11 Distant & Imaginary Objects
	A Mountain
	The Melody

	6.12 Using Events as Functions
	6.13 Structure
	6.14 Debugging
	Command Logs and Game Transcripts
	Interpreter and Instruction Trace
	Debug mode
	Using the Debugger

	7 Adventure Construction
	7.1 Getting an Idea
	7.2 Elaborating the Story
	7.3 Implementing it
	7.4 Polishing the Adventure
	7.5 Beta Testing
	Appendix A: How To Use The System
	A.1 Compiling
	A.2 Compiler Switches
	A.3 Running the Adventure
	A.4 Interpreter Switches

	Appendix B: A Sample Interaction
	Appendix C: Run-time Messages
	C.1 Input Response Messages
	C.2 System Errors

	Player Errors
	Author Errors
	Implementor Errors
	Appendix D: Language Grammar
	D.1 Description
	D.2 Keywords

	Appendix E: Predefined player words

	English
	Swedish
	German
	Appendix F: Compiler Messages
	F.1 Format of messages
	F.2 Message explanations

	Appendix G: Localization
	G.1 Character/Glyph availability
	G.2 Standard messages
	G.3 Player words
	G.4 Word variations
	G.5 Word order

	Appendix H: Portability of Games
	Appendix I: Copying Conditions
	I.1 Artistic License 2.0

	Preamble
	Definitions
	Permission for Use and Modification Without Distribution
	Permissions for Redistribution of the Standard Version
	Distribution of Modified Versions of the Package as Source
	Distribution of Compiled Forms of the Standard Version or Modified Versions without the Source
	Aggregating or Linking the Package
	Items That are Not Considered Part of a Modified Version
	General Provisions
	I.2 Executive Summary

